Bisection

Math 426
University of Alaska Fairbanks

September 2, 2020

Last Class

Given a function f we wish to find a solution of

$$
f(x)=c .
$$

Last Class

Given a function f we wish to find a solution of

$$
f(x)=c
$$

By defining $F(x)=f(x)-c$ we can assume $c=0$.

$$
f(x)=c \Rightarrow \begin{aligned}
f(x)-c & =0 \\
F(x) & =0
\end{aligned}
$$

Last Class

Given a function f we wish to find a solution of

$$
f(x)=c .
$$

By defining $F(x)=f(x)-c$ we can assume $c=0$.
Find functions $F(x)$ that

- A solution of $F(x)=0$ is $\sqrt{2}$.

$$
\begin{gathered}
F(x)=x^{2}-2 \\
F(x)=x-\sqrt{2} \\
\uparrow
\end{gathered}
$$

Last Class

Given a function f we wish to find a solution of

$$
f(x)=c
$$

By defining $F(x)=f(x)-c$ we can assume $c=0$.
Find functions $F(x)$ that

- A solution of $F(x)=0$ is $\sqrt{2}$.
- A solution of $F(x)=0$ is π.

$$
F(x)=\sin (x)
$$

$$
\sin (\pi)=0
$$

$$
\begin{aligned}
F(\pi) & =0 \\
F(x) & =0 \\
x & =\pi
\end{aligned}
$$

Idea of Bisection

Suppose we know numbers a and b with $a<b$ and

$$
\begin{aligned}
& F(a)<0 \\
& F(b)>0
\end{aligned}
$$

Then there should be a c somewhere in the middle so that $F(c)=0$.

Idea of Bisection

Suppose we know numbers a and b with $a<b$ and

$$
\begin{aligned}
& F(a)<0 \\
& F(b)>0
\end{aligned}
$$

Then there should be a c somewhere in the middle so that $F(c)=0$.

Not so fast:

- $F(x)=\frac{1}{x}$
- $a=-1, F(a)=-1$
- $b=1, F(b)=1$

Idea of Bisection

Suppose we know numbers a and b with $a<b$ and

$$
\begin{aligned}
& F(a)<0 \\
& F(b)>0
\end{aligned}
$$

Then there should be a c somewhere in the middle so that $F(c)=0$.

Not so fast:

- $F(x)= \begin{cases}1 & x>0 \\ -1 & x \leq 0\end{cases}$
- $a=-1, F(a)=-1$
- $b=1, F(b)=1$

Intermediate Value Theorem

Extra ingredient: continuity.

Theorem

Suppose f is a continuous function on an interval $[a, b]$. Then for each value of y between $f(a)$ and $f(b)$ there exists $c \in[a, b]$ such that

Intermediate Value Theorem

Extra ingredient: continuity.

Theorem

Suppose f is a continuous function on an interval $[a, b]$. Then for each value of y between $f(a)$ and $f(b)$ there exists $c \in[a, b]$ such that

$$
f(c)=y .
$$

Intermediate Value Theorem

Extra ingredient: continuity.

Theorem

Suppose f is a continuous function on an interval $[a, b]$. Then for each value of y between $f(a)$ and $f(b)$ there exists $c \in[a, b]$ such that

$$
f(c)=y .
$$

So if F is continuous, $F(a)<0$ and $F(b)>0$ there is c somewhere in between such that $F(c)=0$. This guarantees a root.

Bisection Algorithm In A Picture

$$
m_{3}=\frac{a_{3}+b_{3}}{2}
$$

$m_{3}=\frac{a_{3}+b_{3}}{2}$

