Floating Point

Math 426
University of Alaska Fairbanks

September 25, 2020

Rounding modes
9-bit format mantissa: 4 bits
Compute $(1.0000)_{2} \times 2^{0}+(1.11)_{2} \times 2^{-3}$

| | $\begin{array}{l}1.0011 \\ \text { Modes: } \\ \text { 1. up }(\rightarrow \infty): .0001\end{array}$ |
| :--- | :--- | :--- |
| 1.0100 | |

2. down $(\rightarrow-\infty)$:
1.00111
3. zero $(\rightarrow 0)$:
4. nearest (default)

Round to nearest

Special rule if the number is exactly halfway between the two nearest representable numbers: result is the unique nearby representable number with a 0 in its least significant digit.

Rounding Error
$\varepsilon \rightarrow$ machine ε
Suppose $2^{E} \leq x<2^{E+1}$.
$(-1)^{s} m E$
Number line:
\rightarrow \# Ot choirs Z^{k} k number of bits

Rounding Error

Rounding Error

Suppose $2^{E} \leq x<2^{E+1}$.
Number line:

So: $|x-\operatorname{round}(x)| \leq \epsilon 2^{E}$.
(or $\epsilon / 22^{E}$ for round to nearest)
$\left.\frac{|x-\operatorname{round}(x)|}{|x|} \right\rvert\, \quad$ Relative eros

$$
\begin{aligned}
& \int_{|x-\operatorname{rand}(x)| \leq 2^{E} \varepsilon}^{\text {Suppose }}{\stackrel{2}{2 E x} \leq 2^{E+1} .}_{x} \\
& 2^{E} \leq|x| \quad \frac{|x-\operatorname{vond}(x)|}{|x|} \leq \frac{2^{E} \varepsilon}{|x|} \leq \frac{2^{E} \varepsilon}{2 E} \\
& \frac{1}{|x|} \leqslant \frac{1}{2} E \\
& =\varepsilon
\end{aligned}
$$

Rounding Error

$$
\frac{\mid x-\operatorname{round}(x)}{|x|}
$$

Suppose $2^{E} \leq x<2^{E+1}$.

$$
\frac{|x-\operatorname{racnd}(x)|}{|x|} \leqslant \varepsilon
$$

$\left(\$ \frac{\varepsilon}{2}\right)$ for round to nearest

Rounding Error

$$
\frac{\mid x-\operatorname{round}(x)}{|x|}
$$

Suppose $2^{E} \leq x<2^{E+1}$.
$1 /|x| \leq 2^{-E}$

Rounding Error

$$
\frac{\mid x-\operatorname{round}(x)}{|x|}
$$

Suppose $2^{E} \leq x<2^{E+1}$.
$1 /|x| \leq 2^{-E}$

$$
\frac{\mid x-\operatorname{round}(x)}{|x|} \leq \epsilon 2^{E} 2^{-E}=\epsilon
$$

(or $\epsilon / 2$ for round to nearest)

IEEE 754 arithmetic

The result of a floating point operation $(+,-, \cdot, /)$ is the correctly rounded value of the exact result.

$$
\begin{aligned}
& x \oplus y:=\operatorname{round}(x+y)=x+y+\operatorname{error} \\
& \varepsilon \geqslant \frac{\mid \operatorname{eror} f}{|x+y|}=\frac{|\operatorname{ron}(x+y)-x+y|}{|x+y|} \\
& |\operatorname{rand}(x+y)-(x+y)| \leq \varepsilon|x+y|
\end{aligned}
$$

IEEE 754 arithmetic

$$
x \otimes_{y}=(x-4)(1+\delta)
$$

$$
\uparrow
$$

The result of a floating point operation $(+,-, \cdot, /)$ is the correctly rounded value of the exact result.

$$
x \oplus y:=\underbrace{\operatorname{round}(x+y)}=x+y+\text { error }
$$

$x \oplus y=(x+y)(1+\delta) \quad$ for sone number δ

$$
=(x+y)+\frac{(x+y) \delta}{G \text { error } \frac{\text { error }}{x+y}}=\delta
$$

IEEE 754 arithmetic

The result of a floating point operation $(+,-, \cdot, /)$ is the correctly rounded value of the exact result.

$$
x \oplus y:=\operatorname{round}(x+y)=x+y+\text { error }
$$

Similar operations: $\Theta, \otimes, \varnothing$.

Rounding Isn't Easy

Rounding Isn't Easy

Compute $1.0000_{2}-0.00001010_{2}$ versus $1.0000_{2}-0.00001000_{2}$ under round to nearest.

Requires extra bits (2 suffice for most: guard bits). Special cases requrie more (sticky bit for flag).
\uparrow

