Floating Point

Math 426
University of Alaska Fairbanks

September 21, 2020

Signed Integers (Offset Binary)
\uparrow
E.g., 4-bit representation of signed integers.

Unished:

Signed Integers (Offset Binary)
E.g., 4-bit representation of signed integers.

Offset binary subtract off an offset (l acerb)
$0000 \rightarrow-7$
$0001 \rightarrow-6$
$0010 \rightarrow-5$
offset for 4 bits
$1000 \rightarrow$ ।
is $1-2^{3}$

Signed Integers (Offset Binary)

E.g., 4-bit representation of signed integers.

In most other applications, two's complement is used!

Unsigned Fixed Point Numbers

smallest $(00.01)_{2}=\frac{1}{4}$
biggest $(11.11)_{2}=33 / 4$

Floating Point Numbers
in between we use

$$
(-1)^{5}
$$ n.

- s, sign, ± 1
- m, mantissa, $1 \leq m<2 \rightarrow$ fixed point number
- E, an integer, exponent
\longrightarrow offer binary (signed number)

$$
\left[\begin{array}{l}
1: s=0, m=1, E=0 \quad(-1)^{0} \cdot 1 \cdot 2^{0}=1 \\
2: s=0, m=1, E=1
\end{array}\right.
$$

Fictional 8-bit format

- sign: 1 bit $s=0 \rightarrow+, s=1 \rightarrow-\quad(-1)^{s}$
- exponent: 3 bits
hidden bit form-
The 1 is impact.
$\left(1 . b_{1}, b_{2} b_{3} b_{4}\right)_{2}$
$1.0000_{2}=1$
$1.00012=1+\frac{1}{16}$

1. $1111_{2}=1+\frac{15}{16}$

Fictional 8-bit format

- sign: 1 bit
- exponent: 3 bits
- mantissa: 4 bits

Mantissa is in unsigned binary. Exponent is signed, offset binary.

$$
\begin{aligned}
& \begin{array}{|l|l|l|}
\hline e_{1} & e_{2} & e_{3} \\
\hline
\end{array} \\
& \begin{array}{ccc|c}
0 & 0 & 0 & -3 \\
0 & 0 & 1 & -2 \\
0 & 1 & 0 & -1 \\
0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 \\
1 & 0 & 1 & 2 \\
1 & 1 & 0 & 3 \\
1 & 1 & 1 & 4
\end{array} \\
& 2^{3} \quad 2^{2} \text { pos. } \\
& 2^{2}-1 \text { neg. } \\
& -\left(2^{2}-1\right) \text { to } 2^{2} \\
& -3 \text { so } 4
\end{aligned}
$$

Hidden bit representation

All numbers between 1 and 2 in base two start with a 1 , so we can save a bit and gain precision by making the 1 implicit.

All numbers between 1 and 2 in base two start with a 1 , so we can save a bit and gain precision by making the 1 implicit. All available numbers:
Available numbers:

$$
\pm\left[1,1 \frac{1}{16}, \ldots, 1 \frac{15}{16}\right] \times \frac{\overbrace{}^{[-3,-2, \ldots, 4]}}{\frac{1}{8,} \frac{1}{4} \ldots 8,16}
$$

Available nambers:

$$
\pm\left[1,1 \frac{1}{16}, \ldots, 1 \frac{15}{16}\right] \times \underbrace{\frac{1}{8}, \frac{1}{4} \cdot .8,16}
$$

Precision and Machine Epsilon

8 bit format $\varepsilon=1 / 16$

$$
\left[\begin{array}{c}
1+\varepsilon \\
1+2 \varepsilon \\
\vdots \\
2-\varepsilon
\end{array} \longrightarrow\right.
$$

The Monster Gap Around Zero
Smallest positive number

Subnormal Numbers (And two zeros!)

Give up so me exponents:

$$
\begin{array}{ccccc}
0 & 0 & \rightarrow-3 & 1-2^{2} \\
00 & 1 \rightarrow-2 & \vdots \\
\vdots & & \vdots \\
1 & 0 & \rightarrow 3 & \vdots \\
1 & 0 & \\
1 & 1 & \rightarrow 4 & z^{2} & 2^{2} \\
z^{2}-1
\end{array}
$$

Subnormal Numbers (And two zeros!)

$$
\begin{aligned}
& 7 \mathrm{OOO} \longmapsto \text { very small } \\
& 111 \longmapsto \text { wield } \\
& 5 \begin{array}{|l|l|l|l|l|l|}
\hline 0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{array} \\
& s=0 \rightarrow+0 \\
& s=1 \rightarrow-0 \\
& 6000 \text { b, ba bs by } \\
& (-1)^{5}\left(0 \cdot b_{1} b_{2} b_{3} b_{4}\right)_{2} \cdot 2^{-2} \\
& 1 / 16
\end{aligned}
$$

Subnormal Numbers (And two zeros!)
sane step size

Chare less precisian

Infinity
$e: 111$

Inf

$$
-\operatorname{Inf}
$$

Exponent is all 1's. Mantissa is all 0's.

$$
\rightarrow \pm \infty
$$

Positive infinity .(0)111 0000
Negative infinity: 11110000

$$
\begin{aligned}
& x+y \\
& p
\end{aligned}
$$

$$
\begin{aligned}
& 7 / 00 \rightarrow 0 \\
& -7 / 00 \rightarrow-0
\end{aligned}
$$

$$
\infty+?
$$

$$
\omega+5=\infty
$$

Infinity

Exponent is all 1's. Mantissa is all 0's.
Positive infinity: 01110000
Negative infinity: 11110000

Exponent is all 1's. Mantissa is all 0's.
Positive infinity: 01110000
Negative infinity: 11110000

$$
\begin{aligned}
& \frac{1}{+0} \rightarrow+\operatorname{Int} \\
& \frac{1}{-0} \rightarrow-\operatorname{Inf}
\end{aligned}
$$

Any other pattern s $111 \quad b_{1} b_{2} b_{3} b_{4}$ is Not a Number (NaN).

$$
x=N a N \quad \frac{O}{O} \rightarrow N_{a} N
$$

IEEE 754

Single precision: 32 bits.

1. sign: 1 bit
2. exponent: 8 bits
3. mantissa: 23 bits

Machine epsilon: $2^{-23} \approx 2.2 \times 10^{-7}$.
Smallest (normal) number: $2^{-126} \approx$

