Math 426

University of Alaska Fairbanks

September 14, 2020

When do you stop?

@ AfLL-r q ‘rea Auwt(’b-ag u‘l’&w!ﬂ(ﬂé
(Eerer) N

@ | (—(xk\\ 4 gHo(‘F'(sl-,)=°

\ @/
e] Eon)

l Xery l

X
D = 4| € €y,

L ublude.

rc‘a(?«’c_ Yo\eran e

I

f(x.)=0

f(x:)=0

We say a method is ordnvergent if
Csr lofsﬂ- Valws aﬁk

|ek+1| _C

lim
k— o0 |ek|‘x

e l=Cle ¢

for some positive constant C.

lexs1| ~ Clex|®, so bigger a is better

Convergence Rates

f(x:)=0

We say a method is order o convergent if

lim €1 =C
k— o0 |ek|“

for some positive constant C.
. . e
lexs1| ~ Clek|*, so bigger a is better L= ,(-

Bisection: linear (a = 1) Qkﬂ v qc_/L % -
Newton's method: quadratic (a = 2) [Mostly!] le’kr‘ (

e (™

— C

Suppose f € C*(R) and f(x,) =0 . If f'(x,) £ 0 then there is an
€ > 0 such that if x; € (x« — €, X +€) then

1. x = X«
2 |ek+1| f”(X*)
e

l (X*]
2_,?/%*' — ‘F(*ﬂ.ﬁ
‘ § (x,‘\: o

= L‘l L‘\ ’ 'F(sé\:- Ve
t = «®

Consider f(x) = x?, x, = 0.

f'(xs) =2x. =0

Consider f(x) = x?, x, = 0.

/(%) = 2% = 0 leml - {l@(

lteration function
f(x X2
(x) e

X
f'(x) ox 2

DO(x)=x-

lterates:

Marginal Convergence Rate

Consider f(x) = x2, x, = 0.
f'(x:) =2x, =0

lteration function

f 2
(I)(X):X— ,(X) :X_X_:i‘
f'(x) 2x 2
lterates: N
k
Xk+1 = ?

Since x, =0,

and

The order of convergence is linear. Fortunately, this is rare.

Marginal Convergence Rate

Consider f(x) = x2, x, = 0.
f'(x:) =2x, =0

lteration function

f 2
(D(X):X— ,(X) :X_X_:i_
f'(x) 2x 2
lterates: « l
k
Xk+1 = ? l"‘ -

Since x, =0,

and

The order of convergence is linear. Fortunately, this is rare.

See text: if £(x:), F/(x:) = 0,...,F(M(x.) =0 and F(™D(x,) 0
then linear convegence, but C=1-1/(n+1)

Quasi Newton Methods

Newton’'s method applies to much larger systems than one scalar
function of one real variable. Computing the derivative for large
systems turns out to be both expensive and error-prone to code. If
you get it wrong, convergence rate goes back to linear.

Quasi Newton Methods

Newton’'s method applies to much larger systems than one scalar
function of one real variable. Computing the derivative for large
systems turns out to be both expensive and error-prone to code. If
you get it wrong, convergence rate goes back to linear. Strategy

for a quasi-newton method:

where m(xy) is an approximation of f'(x).

Constant slope

Just use m(xx) = f'(x1) =: m always. This is a pretty crappy idea.
f (%)

m e\m:eb"'gﬁ—(‘)
)

Xk+1 = Xk —

B f(xx)
Xk+1 — Xx = Xk — Xs ~
(- 1 { m
-e _
Taylor: K+ €
- ‘E l‘ f'//

F(xe) = Fxe)+ F (%) (X — X) +
me,(X*)ek + O(e,%)

- (//Ua'["{‘£ O 96/1(,“[[7,

F'(x.)

2(5) (Xk _ X*)Zi

]ek+ O(e?) L taen Corveyuce.

m = V(*x—)

Ck+1 = [1 -

Requires two initial guesses, xp and x1 # Xp.

Picture:

-

Requires two initial guesses, xp and x1 # Xp.

Picture:

(0
_F(a) - F(Xe)

my.
Xk — Xk-1
f(xk)
Xk+1 = Xk — :

my

Requires two initial guesses, xp and x1 # Xp.

Picture:

Requires two initial guesses, xp and x1 # Xp.

Picture:

_ f(Xk) - f(Xk_l)

Xk — Xk-1

ka
Xk+1 = Xk — I(le)

my

Requires two initial guesses, xp and x1 # Xp.

Picture:

Requires two initial guesses, xp and x1 # Xp.

Picture:

_ f(Xk) - f(Xk_l)

Xk — Xk-1

ka
Xk+1 = Xk — I(le)

my

f(xk)

Xk+1

()_f(Xk—l)‘
ka

— Xk-1
Xk

Secant Method: Convegence

Xk+1 = Xk — fij:)
— f(xk) - f(Xk—l)h

Xk — Xk-1

f(xi) = £ (Ok)ex 'F((“)z- ‘g('e")Ck

Haeoto f(xk) = F(xk-1) = (&) ex

l‘*“’("'}\/e,d X x*,m f

- § (m,u 1(6,) (%%)

./VO

£6Y= FOH DG L @S

. ;\’.‘ ’p (» /“> ()‘d)n
(++1) At

fx)= 4 (fb) 1[5) (’(‘“5 hefuetn

% ad &

Pz 3>+ 1) (a) s 4 F6) (1™

Secant Method:

Convegence
f(x
Xk+1 = Xk — (k)
my
e f(Xk) — f(Xk—l) —

Xk — Xk-1
’Twlm‘s%
f(xk) = f'(Ok)ex ﬁ

- f(xk)—F(xk_1) = fl(ék)’# ()(K_ Kk'[B (

o [1_FO0], Fl(év:’: ‘:{ X
ol HEE o

e

At least linear convergence. L>; AL ﬁ“t‘ % 4 (/

f(x)=x?-2,x1=1,x=1.1

e3 ~ 4 x 1071
eq~3x1071
es ~ 6 x 1072

e ~ 8 x 1073

e7m2><].0_42
es v 4 x107% W
egw2><

e1p ~ 4 x 10_16

