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When do you stop?
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We say a method is ordnvergent if
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for some positive constant C.

lexs1| ~ Clex|®, so bigger a is better



Convergence Rates

f(x:)=0

We say a method is order o convergent if
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Bisection: linear (a = 1) Qkﬂ v qc_/L % -
Newton's method: quadratic (a = 2) [Mostly!] le’kr‘ (
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Suppose f € C*(R) and f(x,) =0 . If f'(x,) £ 0 then there is an
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Consider f(x) = x?, x, = 0.

f'(xs) =2x. =0



Consider f(x) = x?, x, = 0.
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Marginal Convergence Rate

Consider f(x) = x2, x, = 0.
f'(x:) =2x, =0

lteration function
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Since x, =0,

and

The order of convergence is linear. Fortunately, this is rare.



Marginal Convergence Rate

Consider f(x) = x2, x, = 0.
f'(x:) =2x, =0

lteration function
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Since x, =0,

and

The order of convergence is linear. Fortunately, this is rare.

See text: if £(x:), F/(x:) = 0,...,F(M(x.) =0 and F(™D(x,) 0
then linear convegence, but C=1-1/(n+1)



Quasi Newton Methods

Newton’'s method applies to much larger systems than one scalar
function of one real variable. Computing the derivative for large
systems turns out to be both expensive and error-prone to code. If
you get it wrong, convergence rate goes back to linear.



Quasi Newton Methods

Newton’'s method applies to much larger systems than one scalar
function of one real variable. Computing the derivative for large
systems turns out to be both expensive and error-prone to code. If
you get it wrong, convergence rate goes back to linear. Strategy

for a quasi-newton method:

where m(xy) is an approximation of f'(x).



Constant slope

Just use m(xx) = f'(x1) =: m always. This is a pretty crappy idea.
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Requires two initial guesses, xp and x1 # Xp.

Picture:
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Secant Method: Convegence
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Secant Method:

Convegence
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f(x)=x?-2,x1=1,x=1.1

e3 ~ 4 x 1071
eq~3x1071
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