Partial Pivoting

Math 426
University of Alaska Fairbanks

October 5, 2020

Why we pivot

$$
\begin{array}{cc}
A=\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right) ; \quad & \mathbf{b}\binom{1}{2} \\
& =
\end{array}
$$

Want to solve $A \mathbf{x}=\mathbf{b}$.
Find the LU factorization of

$$
\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right)
$$

Row exchange by permutation

$$
\begin{aligned}
A & =\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right) \text { permutation matrix } \\
P & =\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \\
P A=\left[\begin{array}{l}
(0,1) A \\
(1,0) A
\end{array}\right] & =\left[\begin{array}{ll}
\text { row } 2 & \text { of } A \\
\text { row of } A
\end{array}\right]
\end{aligned}
$$

Row exchange by permutation

$$
\begin{aligned}
& A=\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right) \\
& P=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \\
& A\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)=(\underset{{ }^{\text {st }},}{(\underbrace{}_{c \theta}(})=\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)
\end{aligned}
$$

Transform the problem

$$
A \mathbf{x}=\mathbf{b}
$$

$$
P A \mathbf{x}=P \mathbf{b}
$$

Now do $L U$ factorization:

$$
(P, L, U)
$$

Permutation Matrices

All entries are zero except

- Each row has exactly one 1 .
- Each column has exactly one 1.

$$
\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)
$$

E.g.

$$
P \mathbb{K}=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) 乙(2,1,3)
$$

Multiply $P A$ to permute rows of A. Multiply $A P$ to permute columns of $A . P^{2}=I$.

This P is special.
$E \rightarrow$ looks like I with two rows nitecluced

$$
\begin{aligned}
& E=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) \quad E^{2}=I \\
& \rightarrow \text { suap rews } \underset{z}{\frac{1}{8} \&} 2 .
\end{aligned}
$$

Full LU Factorization

To solve

$$
A \mathbf{x}=\mathbf{b}
$$

1. Observe this equation is equivalent to $P A \mathbf{x} \neq P \mathbf{b}$.'
2. $S L U \mathbf{x}=P \mathbf{b}$
3. Solve $L \mathbf{b}^{\prime}=P \mathbf{b}$.
4. Solve $U \mathbf{x b}^{\prime}$.

Pivoting even without zeros

Solution:

$$
\hat{\mathbf{x}}=\binom{1+a}{1-a}
$$

$$
a=\frac{10^{-20}}{1-10^{-20}} \approx 10^{-20}
$$

Pivoting even without zeros

$$
\hat{A} \hat{x}=b
$$

Using IEEE doubles:

$$
\begin{array}{ll}
L=\left[\begin{array}{cc}
1 & 0 \\
10^{20} & 1
\end{array}\right] & b=\binom{1}{2} \quad \tilde{A} \hat{x}=b \\
\hat{U}=\left[\begin{array}{cc}
10^{-20} & 1 \\
0 & -10^{20}
\end{array}\right] \quad \begin{array}{l}
L_{y}=b \\
\hat{U} x=y
\end{array} \\
{\left[\begin{array}{ll}
1 & 0 \\
10^{20} & 1
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{z}
\end{array}\right]=\left[\begin{array}{l}
1 \\
2
\end{array}\right] \begin{array}{l}
y_{1}=1 \\
y_{z}=2-10^{20} \\
\hat{y}_{z}=-10^{20}
\end{array}} \\
\hat{y}=\left[\begin{array}{c}
1 \\
-10^{20}
\end{array}\right]
\end{array}
$$

$$
\begin{aligned}
& \begin{array}{l}
L=\left[\begin{array}{ll}
1 & 0 \\
10^{20} & 1
\end{array}\right] \quad \hat{y}=\left[\begin{array}{c}
1 \\
-10^{20}
\end{array}\right] \quad\left[\begin{array}{l}
1+a \\
1-a
\end{array}\right] \\
\hat{J}=\left[\begin{array}{ll}
10^{-20} & 1 \\
0 & -10^{20}
\end{array}\right] 10^{-20} \\
\hat{y}=\frac{a}{2} \\
\\
\hat{U} \hat{x}=\hat{y}
\end{array} \\
& {\left[\begin{array}{cc}
10^{20} & 1 \\
0 & -10^{20}
\end{array}\right]\left[\begin{array}{l}
\hat{x}_{1} \\
\hat{x}_{2}
\end{array}\right]=\left[\begin{array}{c}
1 \\
-10^{20}
\end{array}\right] \quad \hat{x}=\left[\begin{array}{l}
0 \\
1
\end{array}\right]}
\end{aligned}
$$

