Computational Complexity

Math 426
University of Alaska Fairbanks

October 5, 2020

Counting FLOPs
We'll count the number of floating point operations done by a computation ($+,-, \cdot, /$).
E.g: Take the dot product of two n-dimensional vectors:

$$
x_{1} y_{1}+\cdots+x_{n} y_{n}
$$

n multi., $n-1$ additions

Counting FLOPs

We'll count the number of floating point operations done by a computation ($+,-, \cdot, /$).
E.g: Take the dot product of two n-dimensional vectors:

$$
x_{1} y_{1}+\cdots+x_{n} y_{n}
$$

n multiplications, and $n-1$ additions for $2 n-1$ operations.

Counting FLOPs

We'll count the number of floating point operations done by a computation ($+,-, \cdot, /$).
E.g: Take the dot product of two n-dimensional vectors:

$$
x_{1} y_{1}+\cdots+x_{n} y_{n}
$$

n multiplications, and $n-1$ additions for $2 n-1$ operations.
E.g.: Multiply an $n \times n$ matrix A by an n-dimensional vector x .

$$
\begin{aligned}
& A \mathbf{x}=\left(\begin{array}{c}
\mathbf{r}_{1}^{T} \\
\vdots \\
\mathbf{r}_{n}^{T}
\end{array}\right) \mathbf{x}=\left(\begin{array}{c}
\mathbf{r}_{1}^{T} \mathbf{x} \\
\vdots \\
\mathbf{r}_{n}^{T} \mathbf{x}
\end{array}\right) \quad \underbrace{\text { dot ploduct of }} \stackrel{\rightharpoonup}{r_{1}} \cdot \vec{x} \\
& n(2 n-1)=2 n^{2}-n
\end{aligned}
$$

Counting FLOPs

We'll count the number of floating point operations done by a computation ($+,-, \cdot, /$).
E.g: Take the dot product of two n-dimensional vectors:

$$
x_{1} y_{1}+\cdots+x_{n} y_{n}
$$

n multiplications, and $n-1$ additions for $2 n-1$ operations.
E.g.: Multiply an $n \times n$ matrix A by an n-dimensional vector \mathbf{x}.

$$
A \mathbf{x}=\left(\begin{array}{c}
\mathbf{r}_{1}^{T} \\
\vdots \\
\mathbf{r}_{n}^{T}
\end{array}\right) \mathbf{x}=\left(\begin{array}{c}
\mathbf{r}_{1}^{T} \mathbf{x} \\
\vdots \\
\mathbf{r}_{n}^{T} \mathbf{x}
\end{array}\right)
$$

This is n dot products!: $2 n^{2}-n$ operations.

Counting FLOPs

We'll count the number of floating point operations done by a computation ($+,-, \cdot, /$).
E.g: Take the dot product of two n-dimensional vectors:

$$
x_{1} y_{1}+\cdots+x_{n} y_{n}
$$

n multiplications, and $n-1$ additions for $2 n-1$ operations.
E.g.: Multiply an $n \times n$ matrix A by an n-dimensional vector \mathbf{x}.

$$
A \mathbf{x}=\left(\begin{array}{c}
\mathbf{r}_{1}^{T} \\
\vdots \\
\mathbf{r}_{n}^{T}
\end{array}\right) \mathbf{x}=\left(\begin{array}{c}
\mathbf{r}_{1}^{T} \mathbf{x} \\
\vdots \\
\mathbf{r}_{n}^{T} \mathbf{x}
\end{array}\right)
$$

This is n dot products!: $2 n^{2}-n$ operations.
Foreshadowing: In $2 n^{2}-n$, does anybody care about the $-n$ when n is large?

$$
20000-180 \quad 2080000-1080
$$

Lower triangular solve

L lower triangular, all 1's on diagonal.

$$
L \mathbf{c}=\mathbf{b}
$$

Lower triangular solve
L lower triangular, all 1's on diagonal.

First equation is $c_{1}=b_{1}$

$$
L=\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 \\
L_{21} & 1 & 0 & 0 & 0 \\
L_{31} & C_{32} & 1 & 0 & -
\end{array}\right]
$$

Lower triangular solve

L lower triangular, all 1's on diagonal.

$$
L \mathbf{c}=\mathbf{b}
$$

$$
L=\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 \\
L_{21} & 1 & 0 & 0 \\
L_{31} & L_{32} & 1 & 0 & -
\end{array}\right]
$$

First equation is $c_{1}=b_{1}$, no operations.
Second equation is $L_{21} c_{1}+c_{2}=b_{2}$

Lower triangular solve

L lower triangular, all 1's on diagonal.

$$
L \mathbf{c}=\mathbf{b} \quad L=\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 \\
L_{21} & 1 & 0 & 0 & 0 \\
L_{31} & L_{32} & 1 & 0- \\
& & & &
\end{array}\right]
$$

First equation is $c_{1}=b_{1}$, no operations.
Second equation is $L_{21} c_{1}+c_{2}=b_{2}$: two operations
Third equation is $L_{31} c_{1}+L_{32} c_{2}+c_{3}=b_{3}$

Lower triangular solve

L lower triangular, all 1's on diagonal.

$$
L \mathbf{c}=\mathbf{b}
$$

First equation is $c_{1}=b_{1}$, no operations.
Second equation is $L_{21} c_{1}+c_{2}=b_{2}$: two operations
Third equation is $L_{31} c_{1}+L_{32} c_{2}+c_{3}=b_{3}$: four operations
$j^{\text {th }}$ equation: $2(j-1)$

Lower triangular solve

L lower triangular, all 1's on diagonal.

$$
L \mathbf{c}=\mathbf{b}
$$

First equation is $c_{1}=b_{1}$, no operations.
Second equation is $L_{21} c_{1}+c_{2}=b_{2}$: two operations
Third equation is $L_{31} c_{1}+L_{32} c_{2}+c_{3}=b_{3}$: four operations
$j^{\text {th }}$ equation: $2(j-1)$ operations.

Lower triangular solve
L lower triangular, all 1's on diagonal.

First equation is $c_{1}=b_{1}$, no operations.
Second equation is $L_{21} c_{1}+c_{2}=b_{2}$: two operations
Third equation is $L_{31} c_{1}+L_{32} c_{2}+c_{3}=b_{3}$: four operations
$j^{\text {th }}$ equation: $2(j-1)$ operations.
Grand total:

$$
\begin{gathered}
\sum_{j=1}^{n} 2(j-1)=2 \sum_{j=0}^{n-1} \dot{W}=2 \frac{n(n-1)}{2}=n^{2}-n \\
W=j-1
\end{gathered}
$$

Upper triangular solve

U upper triangular, nonzeros on diagonal.

$$
U x=\mathbf{c}
$$

Upper triangular solve

U upper triangular, nonzeros on diagonal.

$$
U x=\mathbf{c}
$$

Last equation is $U_{n n} x_{n}=c_{n}$

Upper triangular solve

U upper triangular, nonzeros on diagonal.

$$
U x=\mathbf{c}
$$

Last equation is $U_{n n} x_{n}=c_{n}$, one operation.
$(n-1)^{\text {st }}$ equation is $U_{n-1, n-1} x_{n-1}+U_{n-1, n} x_{n}=c_{n-1}$

Upper triangular solve

U upper triangular, nonzeros on diagonal.

$$
U x=\mathbf{c}
$$

Last equation is $U_{n n} x_{n}=c_{n}$, one operation.
$(n-1)^{\text {st }}$ equation is $U_{n-1, n-1} x_{n-1}+U_{n-1, n} x_{n}=c_{n-1}$: three operations
$(n-2)^{\text {nd }}$ equation $U_{n-2, n-2} x_{n-2}+U_{n-2, n-1} x_{n-1}+U_{n-2, n} x_{n}=c_{n-2}$

Upper triangular solve

U upper triangular, nonzeros on diagonal.

$$
U x=\mathbf{c}
$$

Last equation is $U_{n n} x_{n}=c_{n}$, one operation.
$(n-1)^{\text {st }}$ equation is $U_{n-1, n-1} x_{n-1}+U_{n-1, n} x_{n}=c_{n-1}$: three operations
$(n-2)^{\text {nd }}$ equation $U_{n-2, n-2} x_{n-2}+U_{n-2, n-1} x_{n-1}+U_{n-2, n} x_{n}=c_{n-2}$: five operations
$(n-j)^{\text {th }}$ equation:

Upper triangular solve

U upper triangular, nonzeros on diagonal.

$$
U x=\mathbf{c}
$$

Last equation is $U_{n n} x_{n}=c_{n}$, one operation.
$(n-1)^{\text {st }}$ equation is $U_{n-1, n-1} x_{n-1}+U_{n-1, n} x_{n}=c_{n-1}$: three operations
$(n-2)^{\text {nd }}$ equation $U_{n-2, n-2} x_{n-2}+U_{n-2, n-1} x_{n-1}+U_{n-2, n} x_{n}=c_{n-2}$: five operations
$(n-j)^{\text {th }}$ equation: $2(j-1)+1$ operations.

Upper triangular solve

U upper triangular, nonzeros on diagonal.

$$
U x=\mathbf{c}
$$

Last equation is $U_{n n} x_{n}=c_{n}$, one operation.
$(n-1)^{\text {st }}$ equation is $U_{n-1, n-1} x_{n-1}+U_{n-1, n} x_{n}=c_{n-1}$: three operations
$(n-2)^{\text {nd }}$ equation $U_{n-2, n-2} x_{n-2}+U_{n-2, n-1} x_{n-1}+U_{n-2, n} x_{n}=c_{n-2}$: five operations
$(n-j)^{\text {th }}$ equation: $2(j-1)+1$ operations.
Grand total:

$$
\sum_{j=1}^{n}[2(j-1)+1]==n^{2}-n+n=n^{2}
$$

L and U Solves are cheap

$$
A+=b
$$

$$
A=L U_{p}
$$

$$
\begin{aligned}
& L_{c}=b \\
& U_{x}=c
\end{aligned}
$$

One L solve and one U solve together: $2 n^{2}-n$ operations.

$$
\Rightarrow \text { same cost as Bib }
$$

L and U Solves are cheap

One L solve and one U solve together: $2 n^{2}-n$ operations.
One matrix-vector multiplication: $2 n^{2}-2$ operations!

LU factorization

$$
A=\left[\begin{array}{cccc}
a_{11} & * & \cdots & \cdots \\
a_{21} & * & \cdots & * \\
\vdots & & & * \\
a_{11} & * & \cdots & *
\end{array}\right] \quad-\frac{a_{21}}{a_{11}}=l
$$

Clearing the first column:
For the second row, determine the multiple (one division)
Then subtract a multiple of row 1 ($\mathrm{n}-1$ multiplications, $\mathrm{n}-1$ subtractions)

You do this for each of the $n-1$ rows below the first row.
$\longrightarrow n-1$ times
Clear first colum:

$$
(n-1)(2(n-1)+1)=2(n-1)^{2}+(n-1)
$$

LU factorization

Clearing the first column:
For the second row, determine the multiple (one division)
Then subtract a multiple of row 1 ($\mathrm{n}-1$ multiplications, $\mathrm{n}-1$ subtractions)

You do this for each of the $n-1$ rows below the first row.
Total: $(n-1)(2(n-1)+1)=2(n-1)^{2}+(n-1)$

LU factorization

Clearing the first column: $2(n-1)^{2}+(n-1)$
Clearing the second column is just like clearing the first column of a $(n-1) \times(n-1)$ matrix.
$2(n-2)^{2}+(n-2)$ operations.

$$
j^{\text {th: }} 2(2-j)^{2}+(n-j)
$$

LU factorization

Clearing the first column: $2(n-1)^{2}+(n-1)$
Clearing the second column is just like clearing the first column of a $(n-1) \times(n-1)$ matrix.
$2(n-2)^{2}+(n-2)$ operations.
Clearing the last column: $2(n-n)+(n-n)=0$ operations!

LU factorization

Clearing the first column: $2(n-1)^{2}+(n-1)$
Clearing the second column is just like clearing the first column of a $(n-1) \times(n-1)$ matrix.
$2(n-2)^{2}+(n-2)$ operations.
Clearing the last column: $2(n-n)+(n-n)=0$ operations
Grand total

$$
\begin{gathered}
\sum_{j=1}^{n} 2 \underbrace{2(j-1)^{2}}_{n-j}+\underbrace{(j-1)}_{n-j}=\sum_{j=1}^{n-1} 2 j^{2}+j=2 \frac{(n-1) n(2 n-1)}{6}+\frac{n(n-1)}{2}=\frac{2}{3} n^{3}+a_{2} n^{2}+a_{1} \\
j-1=w-n+1
\end{gathered}
$$

$$
\sum_{j=1}^{n}(j-1) 0+1+\cdots+n-1
$$

$$
\sum_{j=1}^{n}(n-j)=(n-1)+\cdots+0
$$

LU factorization

Clearing the first column: $2(n-1)^{2}+(n-1)$
Clearing the second column is just like clearing the first column of a $(n-1) \times(n-1)$ matrix.
$2(n-2)^{2}+(n-2)$ operations.
Clearing the last column: $2(n-n)+(n-n)=0$ operations
Grand total

$$
\begin{gathered}
\sum_{j=1}^{n} 2(j-1)^{2}+(j-1)=\sum_{j=1}^{n-1} 2 j^{2}+j=2 \frac{(n-1) n(2 n-1)}{6}+\frac{n(n-1)}{2}=\frac{2}{3} n^{3}+a_{2} n^{2}+a_{1} \\
\frac{2}{3} n^{3}+a_{2} n^{2}+a_{1} a
\end{gathered}
$$

