Alternative Approach

Suppose we can find $\mathbf{q}_{1}, \ldots, \mathbf{q}_{m}$ that satisfy $\mathbf{q}_{i} \cdot \mathbf{q}_{j}=\delta_{i j}$ and such that

$$
A=\left[\mathbf{q}_{1} \ldots, \mathbf{q}_{m}\right] R
$$

for an invertible upper triangular matrix R.

$$
\longrightarrow \begin{cases}1 & i=j \\ 0 & i \neq j\end{cases}
$$

Alternative Approach
Suppose we can find $\mathbf{q}_{1}, \ldots, \mathbf{q}_{m}$ that satisfy $\mathbf{q}_{i} \cdot \mathbf{q}_{j}=\delta_{i j}$ and such that

$$
A=\left[\mathbf{q}_{1} \ldots, \mathbf{q}_{m}\right] R
$$

for an invertible upper triangular matrix R.
QR factorization

$$
q_{3} \cdot q_{3}=1
$$

Alternative Approach
Suppose we can find $\mathbf{q}_{1}, \ldots, \mathbf{q}_{m}$ that satisfy $\mathbf{q}_{i} \cdot \mathbf{q}_{j}=\delta_{i j}$ and such that

$$
A=\left[\mathbf{q}_{1} \ldots, \mathbf{q}_{m}\right] R
$$

$$
\begin{gathered}
A \vec{x}=y \\
A^{\top} A \vec{x}=A^{\top} \vec{y}
\end{gathered}
$$

for an invertible upper triangular matrix R.

$$
\begin{gathered}
Q=\left[\mathbf{q}_{1} \ldots, \mathbf{q}_{m}\right] ; \quad Q^{T} Q=I \\
Q^{\top}\left[\begin{array}{c}
q_{1}^{\top} \\
\vdots \\
q_{m}^{\top}
\end{array}\right] \quad\left[\begin{array}{ccc}
1 \\
q_{1} \ldots q_{m}
\end{array}\right] \quad 0-\left[\begin{array}{ccc}
q_{1}^{\top} q_{1} & q_{1}^{\top} q_{2} \ldots & q_{1}^{\top} q_{m} \\
q_{2}^{\top} q_{1} & c & q_{2}^{2} q_{n} \\
\vdots & \vdots \\
A=Q R \quad & Q^{\top} Q=\square
\end{array}\right]
\end{gathered}
$$

Alternative Approach

Suppose we can find $\mathbf{q}_{1}, \ldots, \mathbf{q}_{m}$ that satisfy $\mathbf{q}_{i} \cdot \mathbf{q}_{j}=\delta_{i j}$ and such that

$$
A=\left[\mathbf{q}_{1} \ldots, \mathbf{q}_{m}\right] R
$$

for an invertible upper triangular matrix R.

$$
Q=\left[\mathbf{q}_{1} \ldots, \mathbf{q}_{m}\right] ; \quad Q^{T} Q=I
$$

Normal equation:

Alternative Approach

Suppose we can find $\mathbf{q}_{1}, \ldots, \mathbf{q}_{m}$ that satisfy $\mathbf{q}_{i} \cdot \mathbf{q}_{j}=\delta_{i j}$ and such that

$$
A=\left[\mathbf{q}_{1} \ldots, \mathbf{q}_{m}\right] R_{\phi}
$$

for an invertible upper triangular matrix R.

$$
Q=\left[\mathbf{q}_{1} \ldots, \mathbf{q}_{m}\right] ; \quad Q^{T} Q=I \quad \begin{array}{ll}
& n \nprec \eta \\
& R
\end{array}
$$

Normal equation:

$$
A^{T} A \mathbf{x}=A^{t} \mathbf{b}
$$

Becomes

$$
(Q R)^{T}(Q R) \mathbf{x}=(Q R)^{T} \mathbf{b}
$$

Then

We avoid forming $A^{T} A$ or anything that looks like a square of A.

Gramm-Schmidt

Vectors $\mathbf{v}_{1}, \mathbf{v}_{2}$, linearly independent.
Goal: Find perpendicular unit vectors $\mathbf{q}_{1}, \mathbf{q}_{2}$ uch that the span of the \mathbf{v} 's is the same as the span of the \mathbf{q} 's.

Gramm-Schmidt

Vectors $\mathbf{v}_{1}, \mathbf{v}_{2}$, linearly independent.
Goal: Find perpendicular unit vectors $\mathbf{q}_{1}, \mathbf{q}_{2}$ such that the span of the \mathbf{v} 's is the same as the span of the \mathbf{q} 's.

$$
\tilde{\mathbf{q}}_{1}=\mathbf{v}_{1}
$$

Gramm-Schmidt

Vectors $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{2}$, linearly independent.
Goal: Find perpendicular unit vectors $\mathbf{q}_{1}, \mathbf{q}_{2}$ such that the span of the \mathbf{v} 's is the same as the span of the \mathbf{q} 's.

$$
\underset{\mathbf{q}_{1}}{\tilde{\mathbf{q}}_{1}=\mathbf{v}_{1}} \underset{\tilde{\mathbf{q}}_{1} /\left\|\tilde{\mathbf{q}}_{1}\right\|_{2}}{\longrightarrow} \text { ensures } \vec{q}_{l} \cdot \stackrel{\rightharpoonup}{q}_{l}=1
$$

Gramm-Schmidt

Vectors $\mathbf{v}_{1}, \mathbf{v}_{2}$, linearly independent.
Goal: Find perpendicular unit vectors $\mathbf{q}_{1}, \mathbf{q}_{2}$ such that the span of the \mathbf{v} 's is the same as the span of the \mathbf{q} 's.

$$
\begin{array}{ll}
\tilde{\mathbf{q}}_{1}=\mathbf{v}_{1} & \stackrel{\rightharpoonup}{q_{1}}=\stackrel{\rightharpoonup}{v_{l}} /\left\|\tilde{q}_{1}\right\|_{2} \\
\mathbf{q}_{1}=\tilde{\mathbf{q}}_{1} /\left\|\tilde{\mathbf{q}}_{1}\right\|_{2} & \\
r_{11}=\left\|\tilde{\mathbf{q}}_{1}\right\|_{2} \\
\mathbf{v}_{1}=r_{11} \mathbf{q}_{1} & \vec{v}_{l}=\left\|\tilde{q}_{l}\right\|_{2} \cdot \overrightarrow{q_{1}}
\end{array}
$$

Gramm-Schmidt

Vectors $\mathbf{v}_{1}, \mathbf{v}_{2}$, linearly independent.
Goal: Find perpendicular unit vectors $\mathbf{q}_{1}, \mathbf{q}_{2}$ such that the span of the \mathbf{v} 's is the same as the span of the \mathbf{q} 's.

Already found \mathbf{q}_{1}, r_{11}

$$
\mathbf{v}_{1}=r_{11} \mathbf{q}_{1}
$$

Gramm-Schmidt
Vectors $\mathbf{v}_{1}, \mathbf{v}_{2}$, linearly independent.
Goal: Find perpendicular unit vectors $\mathbf{q}_{1}, \mathbf{q}_{2}$ such that the span of the \mathbf{v} 's is the same as the span of the \mathbf{q} 's.

Already found \mathbf{q}_{1}, r_{11}

$$
\begin{aligned}
& \text { found } \mathbf{q}_{1}, r_{11} \\
&\left\langle\tilde{q}_{2}, q_{1}\right\rangle=\left\langle\begin{array}{l}
\tilde{\mathbf{v}}_{1}^{\top}=v_{11} v_{2} \\
q_{1}: v_{2}
\end{array}\right. \\
&\left\langle v_{2}-\left\langle q_{1}, v_{2}\right\rangle q_{1}, q_{1}\right\rangle \\
&\left.\left\langle q_{1}, v_{2}\right\rangle\right\rangle \\
&=\left\langle v_{2}, q_{1}\right\rangle-\left\langle q_{1}, v_{2}\right\rangle\left\langle q_{1, q_{1}}\right\rangle \\
&=0
\end{aligned}
$$

Gramm-Schmidt

Vectors $\mathbf{v}_{1}, \mathbf{v}_{2}$, linearly independent.
Goal: Find perpendicular unit vectors $\mathbf{q}_{1}, \mathbf{q}_{2}$ such that the span of the \mathbf{v} 's is the same as the span of the q's.

Already found \mathbf{q}_{1}, r_{11}

$$
\begin{gathered}
\mathbf{v}_{1}=r_{11} \mathbf{q}_{1} \\
\tilde{\mathbf{q}}_{2}=\mathbf{v}_{2}-\left\langle\mathbf{q}_{1}, \mathbf{v}_{2}\right\rangle \mathbf{q}_{1} \\
\left\langle\mathbf{q}_{2}, \mathbf{q}_{1}\right\rangle=\left\langle\mathbf{v}_{2}, \mathbf{q}_{1}\right\rangle-\left\langle\mathbf{q}_{1}, \mathbf{v} 2\right\rangle\left\|\mathbf{q}_{1}\right\|_{2}^{2}=0
\end{gathered}
$$

Gramm-Schmidt
Vectors $\mathbf{v}_{1}, \mathbf{v}_{2}$, linearly independent.
Goal: Find perpendicular unit vectors $\mathbf{q}_{1}, \mathbf{q}_{2}$ such that the span of the \mathbf{v} 's is the same as the span of the \mathbf{q} 's.

Already found \mathbf{q}_{1}, r_{11}

$$
\begin{gathered}
\mathbf{v}_{1}=r_{11} \mathbf{q}_{1} \\
\tilde{\mathbf{q}}_{2}=\mathbf{v}_{2}-\left\langle\mathbf{q}_{1}, \mathbf{v}_{2}\right\rangle \mathbf{q}_{1} \\
\left\langle\mathbf{q}_{2}, \mathbf{q}_{1}\right\rangle=\left\langle\mathbf{v}_{2}, \mathbf{q}_{1}\right\rangle-\left\langle\mathbf{q}_{1}, \mathbf{v} 2\right\rangle\left\|\mathbf{q}_{1}\right\|_{2}^{2}=0 \\
\mathbf{q}_{2}=\tilde{\mathbf{q}}_{2} /\left\|\tilde{\mathbf{q}}_{2}\right\|_{2} \quad \tilde{q}_{2}=\left\|\tilde{q}_{2}\right\|_{2} \cdot q_{2} \\
\vec{v}_{2}=\sqrt{r_{12}}{ }_{\left\langle q_{1}, v_{2}\right\rangle}^{r_{22}}+\sqrt{\left\|q_{1}\right\|} \cdot q_{2}
\end{gathered}
$$

Gramm-Schmidt

Vectors $\mathbf{v}_{1}, \mathbf{v}_{2}$, linearly independent.
Goal: Find perpendicular unit vectors $\mathbf{q}_{1}, \mathbf{q}_{2}$ such that the span of the \mathbf{v} 's is the same as the span of the q's.

Already found \mathbf{q}_{1}, r_{11}

$$
\begin{gathered}
\mathbf{v}_{1}=r_{11} \mathbf{q}_{1} \\
\tilde{\mathbf{q}}_{2}=\mathbf{v}_{2}-\left\langle\mathbf{q}_{1}, \mathbf{v}_{2}\right\rangle \mathbf{q}_{1} \\
\left\langle\mathbf{q}_{2}, \mathbf{q}_{1}\right\rangle=\left\langle\mathbf{v}_{2}, \mathbf{q}_{1}\right\rangle-\left\langle\mathbf{q}_{1}, \mathbf{v} 2\right\rangle\left\|\mathbf{q}_{1}\right\|_{2}^{2}=0 \\
\mathbf{q}_{2}=\tilde{\mathbf{q}}_{2} /\left\|\tilde{\mathbf{q}}_{2}\right\|_{2} \\
\mathbf{v}_{2}=\left\|\tilde{\mathbf{q}}_{2}\right\|_{2} \mathbf{q}_{2}+\left\langle\mathbf{q}_{1}, \mathbf{v} 2\right\rangle \mathbf{q}_{1}
\end{gathered}
$$

Gramm-Schmidt

Vectors $\mathbf{v}_{1}, \mathbf{v}_{2}$, linearly independent.
Goal: Find perpendicular unit vectors $\mathbf{q}_{1}, \mathbf{q}_{2}$ such that the span of the \mathbf{v} 's is the same as the span of the \mathbf{q} 's.

Already found \mathbf{q}_{1}, r_{11}

$$
\begin{gathered}
\mathbf{v}_{1}=r_{11} \mathbf{q}_{1} \\
\tilde{\mathbf{q}}_{2}=\mathbf{v}_{2}-\left\langle\mathbf{q}_{1}, \mathbf{v}_{2}\right\rangle \mathbf{q}_{1} \\
\left\langle\mathbf{q}_{2}, \mathbf{q}_{1}\right\rangle=\left\langle\mathbf{v}_{2}, \mathbf{q}_{1}\right\rangle-\left\langle\mathbf{q}_{1}, \mathbf{v} 2\right\rangle\left\|\mathbf{q}_{1}\right\|_{2}^{2}=0 \\
\mathbf{q}_{2}=\tilde{\mathbf{q}}_{2} /\left\|\tilde{\mathbf{q}}_{2}\right\|_{2} \\
\mathbf{v}_{2}=\left\|\tilde{\mathbf{q}}_{2}\right\|_{2} \mathbf{q}_{2}+\left\langle\mathbf{q}_{1}, \mathbf{v} 2\right\rangle \mathbf{q}_{1} \\
r_{12}=\left\langle\mathbf{q}_{1}, \mathbf{v} 2\right\rangle ; \quad r_{22}=\left\|\tilde{\mathbf{q}}_{2}\right\|_{2}
\end{gathered}
$$

$$
\begin{aligned}
& v_{1}, v_{2} \\
& v_{1}=r_{11} q_{1} \\
& v_{2}=r_{12} \dot{q}_{1}+\vec{v}_{1}, r_{22} q_{2} \\
& {\left[\vec{q}_{1}, \vec{q}_{2}\right]\left[\begin{array}{cc}
r_{11} & r_{12} \\
0 & r_{22}
\end{array}\right] } \\
&=\left[\begin{array}{ll}
r_{11} \vec{q}_{1}+0 \vec{q}_{2}, & r_{12} \vec{q}_{1}+r_{12} \vec{q}_{2}
\end{array}\right]
\end{aligned}
$$

Gramm-Schmidt: More vectors!

Start with $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$.
Compute $\mathbf{q}_{1}, \mathbf{q}_{2}, r_{11}, r_{12}$ and r_{22} the same way.

Gramm-Schmidt: More vectors!
Start with $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$.
Compute $\mathbf{q}_{1}, \mathbf{q}_{2}, r_{11}, r_{12}$ and r_{22} the same way.

$$
\tilde{\mathbf{q}}_{3}=\mathbf{v}_{3}-\left\langle\mathbf{v}_{3}, \mathbf{q}_{1}\right\rangle \mathbf{q}_{1}-\left\langle\mathbf{v}_{3}, \mathbf{q}_{2}\right\rangle \mathbf{q}_{2}
$$

Wat $\left\langle\tilde{q}_{3}, q_{1}\right\rangle=0, \quad\left\langle\tilde{q}_{3}, q_{2}\right\rangle=0$.

$$
\begin{aligned}
\left\langle\tilde{q}_{3}, q_{1}\right\rangle & =\left\langle v_{3}, q_{1}\right\rangle-\left\langle v_{3}, q_{1}\right\rangle \\
& =0
\end{aligned}
$$

Gramm-Schmidt: More vectors!

Start with $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{2}, \mathbf{v}_{3}$.
Compute $\mathbf{q}_{1}, \mathbf{q}_{2}, r_{11}, r_{12}$ and r_{22} the same way.

$$
\tilde{\mathbf{q}}_{3}=\mathbf{v}_{3}-\left\langle\mathbf{v}_{3}, \mathbf{q}_{1}\right\rangle \mathbf{q}_{1}-\left\langle\mathbf{v}_{3}, \mathbf{q}_{2}\right\rangle \mathbf{q}_{2}
$$

Verify that $\tilde{\mathbf{q}}_{3}$ is perpendicular to \mathbf{q}_{1} and \mathbf{q}_{2}.

Gramm-Schmidt: More vectors!

Start with $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{2}, \mathbf{v}_{3}$.
Compute $\mathbf{q}_{1}, \mathbf{q}_{2}, r_{11}, r_{12}$ and r_{22} the same way.

$$
\tilde{\mathbf{q}}_{3}=\mathbf{v}_{3}-\left\langle\mathbf{v}_{3}, \mathbf{q}_{1}\right\rangle \mathbf{q}_{1}-\left\langle\mathbf{v}_{3}, \mathbf{q}_{2}\right\rangle \mathbf{q}_{2}
$$

Verify that $\tilde{\mathbf{q}}_{3}$ is perpendicular to \mathbf{q}_{1} and \mathbf{q}_{2}.
Make it have unit length:

$$
\mathbf{q}_{3}=\tilde{\mathbf{q}}_{3} /\left\|\tilde{\mathbf{q}}_{3}\right\|_{2}
$$

$$
\mathbf{v}_{3}=\left\langle\mathbf{v}_{3}, \mathbf{q}_{1}\right\rangle \mathbf{q}_{1}+\left\langle\mathbf{v}_{3}, \mathbf{q}_{2}\right\rangle \mathbf{q}_{2}+\left\|\tilde{\mathbf{q}}_{3}\right\|_{2} \mathbf{q}_{3}
$$

$$
r_{13}=\left\langle\mathbf{q}_{1}, \mathbf{v}_{3}\right\rangle ; \quad r_{23}=\left\langle\mathbf{q}_{2}, \mathbf{v}_{3}\right\rangle ; \quad r_{33}=\left\|\tilde{\mathbf{q}}_{3}\right\|_{2}
$$

Gramm Schmidt $=Q R$ Factorization

Starting from $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$:

$$
\begin{aligned}
\mathbf{v}_{1} & =r_{11} \mathbf{q}_{1} \\
\mathbf{v}_{2} & =r_{12} \mathbf{q}_{1}+r_{22} \mathbf{q}_{2} \\
\mathbf{v}_{3} & =r_{13} \mathbf{q}_{1}+r_{23} \mathbf{q}_{2}+r_{3} 3 \mathbf{q}_{3}
\end{aligned}
$$

Cram Schmidt $=Q R$ Factorization

Starting from $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$:

$$
\begin{aligned}
\mathbf{v}_{1} & =r_{11} \mathbf{q}_{1} \\
\mathbf{v}_{2} & =r_{12} \mathbf{q}_{1}+r_{22} \mathbf{q}_{2} \\
\mathbf{v}_{3} & =r_{13} \mathbf{q}_{1}+r_{23} \mathbf{q}_{2}+r_{3} 3 \mathbf{q}_{3}
\end{aligned}
$$

$$
\begin{aligned}
& \left[\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right]=\underbrace{\left[\mathbf{q}_{1}, \mathbf{q}_{2}, \mathbf{q}_{3}\right]}]\left(\begin{array}{ccc}
r_{11} & r_{12} & r_{13} \\
0 & r_{22} & r_{23} \\
0 & 0 & r_{33}
\end{array}\right) \\
& A=\left[\vec{v}_{1}, \vec{v}_{3}\right]_{18 \times 3}>18 \times 3
\end{aligned}
$$

Gramm Schmidt $=Q R$ Factorization

Quadratic Interpolation

Data points: $\left(x_{1}, y_{1}\right), \ldots,\left(x_{5}, y_{5}\right)$.
Let's find a 'best fit' quadratic polynomial. Ddeally, find $\mathbf{c}=\left[c_{0}, c_{1}, c_{2}\right]^{T}$ such that

