Suppose we can find $\mathbf{q}_1, \ldots, \mathbf{q}_m$ that satisfy $\mathbf{q}_i \cdot \mathbf{q}_j = \delta_{ij}$ and such that

$$A = [\mathbf{q}_1 \dots, \mathbf{q}_m]R$$

for an invertible upper triangular matrix R.

Suppose we can find $\mathbf{q}_1, \ldots, \mathbf{q}_m$ that satisfy $\mathbf{q}_i \cdot \mathbf{q}_j = \delta_{ij}$ and such that $A = [\mathbf{q}_1 \dots, \mathbf{q}_m]R$ for an invertible upper triangular matrix *R*. $A\vec{x} = \gamma$ $A^T A\vec{x} = A^T \vec{y}$ $Q = [\mathbf{q}_1 \dots, \mathbf{q}_m]; \qquad Q^T Q = I$ $Q^{T} \begin{bmatrix} 2_{1}^{T} \\ \vdots \\ 2_{m}^{T} \end{bmatrix} \begin{bmatrix} 2_{1} \cdots 2_{m} \end{bmatrix} \begin{bmatrix} 4_{1}^{T} 2_{1} & 2_{1}^{T} 2_{2} \cdots & 2_{n}^{T} 2_{m} \\ g_{1}^{T} 2_{1} & g_{1}^{T} 2_{2} \cdots & g_{n}^{T} 2_{n} \\ g_{n}^{T} \end{bmatrix} = \begin{bmatrix} 2_{n}^{T} 2_{1} & c & 2_{n}^{T} 2_{m} \\ g_{n}^{T} & c & g_{n}^{T} 2_{n} \\ g_{n}^{T} & g_{n}^{T} \end{bmatrix}$ A=QR

Suppose we can find $\mathbf{q}_1, \ldots, \mathbf{q}_m$ that satisfy $\mathbf{q}_i \cdot \mathbf{q}_j = \delta_{ij}$ and such that

 $A = [\mathbf{q}_1 \dots, \mathbf{q}_m]R$

for an invertible upper triangular matrix R.

$$Q = [\mathbf{q}_1 \dots, \mathbf{q}_m]; \qquad Q^T Q = I$$

Suppose we can find $\mathbf{q}_1, \dots, \mathbf{q}_m$ that satisfy $\mathbf{q}_i \cdot \mathbf{q}_j = \delta_{ij}$ and such that $A = \begin{bmatrix} \mathbf{q}_1 \dots, \mathbf{q}_m \end{bmatrix} R$

for an invertible upper triangular matrix R.

$$Q = [\mathbf{q}_1 \dots, \mathbf{q}_m]; \qquad Q^T Q = I$$

nky nxq

 $)(n^{2})$

Normal equation:

$$A^T A \mathbf{x} = A^t \mathbf{b}$$

Becomes

$$(QR)^T (QR)\mathbf{x} = (QR)^T \mathbf{k}$$

Then

We avoid forming $A^T A$ or anything that looks like a square of A.

 $R\mathbf{x}$

 $Q^T \mathbf{b}$

Vectors \mathbf{v}_1 , \mathbf{v}_2 , linearly independent.

Goal: Find perpendicular unit vectors \mathbf{q}_1 , \mathbf{q}_2 such that the span of the \mathbf{v} 's is the same as the span of the \mathbf{q} 's.

Vectors \mathbf{v}_1 , \mathbf{v}_2 , linearly independent.

Goal: Find perpendicular unit vectors \mathbf{q}_1 , \mathbf{q}_2 such that the span of the \mathbf{v} 's is the same as the span of the \mathbf{q} 's.

 $\tilde{\mathbf{q}}_1 = \mathbf{v}_1$

Vectors \mathbf{v}_1 , \mathbf{v}_2 , linearly independent.

Goal: Find perpendicular unit vectors \mathbf{q}_1 , \mathbf{q}_2 such that the span of the \mathbf{v} 's is the same as the span of the \mathbf{q} 's.

Vectors \mathbf{v}_1 , \mathbf{v}_2 , linearly independent.

Goal: Find perpendicular unit vectors \mathbf{q}_1 , \mathbf{q}_2 such that the span of the \mathbf{v} 's is the same as the span of the \mathbf{q} 's.

$$\tilde{\mathbf{q}}_{1} = \mathbf{v}_{1}$$

$$\tilde{\mathbf{q}}_{1} = \tilde{\mathbf{q}}_{1} / ||\tilde{\mathbf{q}}_{1}||_{2}$$

$$\tilde{\mathbf{q}}_{1} = \tilde{\mathbf{v}}_{1} / ||\tilde{\mathbf{q}}_{1}||_{2}$$

$$\tilde{\mathbf{v}}_{1} = ||\tilde{\mathbf{q}}_{1}||_{2}$$

$$\tilde{\mathbf{v}}_{1} = r_{11}\mathbf{q}_{1}$$

Vectors \mathbf{v}_1 , \mathbf{v}_2 , linearly independent.

Goal: Find perpendicular unit vectors \mathbf{q}_1 , \mathbf{q}_2 such that the span of the \mathbf{v} 's is the same as the span of the \mathbf{q} 's.

Already found \mathbf{q}_1 , r_{11}

 $\mathbf{v}_1 = r_{11}\mathbf{q}_1$

Vectors \mathbf{v}_1 , \mathbf{v}_2 , linearly independent.

Goal: Find perpendicular unit vectors \mathbf{q}_1 , \mathbf{q}_2 such that the span of the \mathbf{v} 's is the same as the span of the \mathbf{q} 's.

Already found \mathbf{q}_1 , r_{11} $\mathbf{v}_1 = r_{11}\mathbf{q}_1$ $\tilde{\mathbf{q}}_2 = \mathbf{v}_2 - \langle \mathbf{q}_1, \mathbf{v}_2 \rangle \mathbf{q}_1$ $\langle \tilde{1}_{22}, \tilde{1} \rangle = \langle v_2 - \langle \tilde{1}_1, v_2 \rangle \langle \tilde{1}_1, \tilde{2}_1 \rangle$ $= \langle v_2, v_1 \rangle - \langle v_1, v_2 \rangle \langle v_1, v_2 \rangle$

Vectors \mathbf{v}_1 , \mathbf{v}_2 , linearly independent.

Goal: Find perpendicular unit vectors \mathbf{q}_1 , \mathbf{q}_2 such that the span of the \mathbf{v} 's is the same as the span of the \mathbf{q} 's.

Already found \mathbf{q}_1 , r_{11}

 $\mathbf{v}_1 = r_{11}\mathbf{q}_1$

$$\tilde{\mathbf{q}}_2 = \mathbf{v}_2 - \langle \mathbf{q}_1, \mathbf{v}_2 \rangle \, \mathbf{q}_1$$

$$\langle \mathbf{q}_2, \mathbf{q}_1 \rangle = \langle \mathbf{v}_2, \mathbf{q}_1 \rangle - \langle \mathbf{q}_1, \mathbf{v}_2 \rangle ||\mathbf{q}_1||_2^2 = 0$$

Vectors \mathbf{v}_1 , \mathbf{v}_2 , linearly independent.

Goal: Find perpendicular unit vectors \mathbf{q}_1 , \mathbf{q}_2 such that the span of the \mathbf{v} 's is the same as the span of the \mathbf{q} 's.

Already found \mathbf{q}_1 , r_{11}

 $\mathbf{v}_1 = r_{11}\mathbf{q}_1$

$$\tilde{\mathbf{q}}_{2} = \mathbf{v}_{2} - \langle \mathbf{q}_{1}, \mathbf{v}_{2} \rangle \mathbf{q}_{1}$$

$$\langle \mathbf{q}_{2}, \mathbf{q}_{1} \rangle = \langle \mathbf{v}_{2}, \mathbf{q}_{1} \rangle - \langle \mathbf{q}_{1}, \mathbf{v}_{2} \rangle ||\mathbf{q}_{1}||_{2}^{2} = 0$$

$$\mathbf{q}_{2} = \tilde{\mathbf{q}}_{2} / ||\tilde{\mathbf{q}}_{2}||_{2} \qquad \tilde{\mathbf{f}}_{2} = ||\tilde{\mathbf{q}}_{2}||_{2} \cdot \mathbf{f}_{2}$$

$$\tilde{\mathbf{f}}_{2} = ||\tilde{\mathbf{q}}_{2}||_{2} \cdot \mathbf{f}_{2}$$

$$\tilde{\mathbf{f}}_{2} = ||\tilde{\mathbf{q}}_{2}||_{2} \cdot \mathbf{f}_{2}$$

Vectors \mathbf{v}_1 , \mathbf{v}_2 , linearly independent.

Goal: Find perpendicular unit vectors \mathbf{q}_1 , \mathbf{q}_2 such that the span of the \mathbf{v} 's is the same as the span of the \mathbf{q} 's.

Already found \mathbf{q}_1 , r_{11}

 $\mathbf{v}_1 = r_{11}\mathbf{q}_1$

$$\tilde{\mathbf{q}}_2 = \mathbf{v}_2 - \langle \mathbf{q}_1, \mathbf{v}_2 \rangle \, \mathbf{q}_1$$

$$\langle \mathbf{q}_2, \mathbf{q}_1 \rangle = \langle \mathbf{v}_2, \mathbf{q}_1 \rangle - \langle \mathbf{q}_1, \mathbf{v}_2 \rangle ||\mathbf{q}_1||_2^2 = 0$$

 $\mathbf{q}_2 = \tilde{\mathbf{q}}_2 / ||\tilde{\mathbf{q}}_2||_2$

$$\mathbf{v}_2 = ||\tilde{\mathbf{q}}_2||_2 \mathbf{q}_2 + \langle \mathbf{q}_1, \mathbf{v}_2 \rangle \mathbf{q}_1$$

Vectors \mathbf{v}_1 , \mathbf{v}_2 , linearly independent.

Goal: Find perpendicular unit vectors \mathbf{q}_1 , \mathbf{q}_2 such that the span of the \mathbf{v} 's is the same as the span of the \mathbf{q} 's.

Already found \mathbf{q}_1 , r_{11}

 $\mathbf{v}_1 = r_{11}\mathbf{q}_1$

$$\tilde{\mathbf{q}}_{2} = \mathbf{v}_{2} - \langle \mathbf{q}_{1}, \mathbf{v}_{2} \rangle \mathbf{q}_{1}$$

$$\langle \mathbf{q}_{2}, \mathbf{q}_{1} \rangle = \langle \mathbf{v}_{2}, \mathbf{q}_{1} \rangle - \langle \mathbf{q}_{1}, \mathbf{v}_{2} \rangle ||\mathbf{q}_{1}||_{2}^{2} = 0$$

$$\mathbf{q}_{2} = \tilde{\mathbf{q}}_{2} / ||\tilde{\mathbf{q}}_{2}||_{2}$$

$$\mathbf{v}_{2} = ||\tilde{\mathbf{q}}_{2}||_{2} \mathbf{q}_{2} + \langle \mathbf{q}_{1}, \mathbf{v}_{2} \rangle \mathbf{q}_{1}$$

$$r_{12} = \langle \mathbf{q}_{1}, \mathbf{v}_{2} \rangle; \qquad r_{22} = ||\tilde{\mathbf{q}}_{2}||_{2}$$

Start with \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 .

Compute \mathbf{q}_1 , \mathbf{q}_2 , r_{11} , r_{12} and r_{22} the same way.

Start with \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 .

Compute \mathbf{q}_1 , \mathbf{q}_2 , r_{11} , r_{12} and r_{22} the same way.

 $\tilde{\mathbf{q}}_3 = \mathbf{v}_3 - \langle \mathbf{v}_3, \mathbf{q}_1 \rangle \mathbf{q}_1 - \langle \mathbf{v}_3, \mathbf{q}_2 \rangle \mathbf{q}_2$

Whent $(\tilde{q}_{3}, \tilde{q}_{1}, 7 = \partial)$, $(\tilde{q}_{3}, \tilde{q}_{2}, 7 = \partial)$.

 $\langle \tilde{\tilde{t}}_{3}, \tilde{v}_{1} \rangle = \langle v_{3}, \tilde{v}_{1} \rangle - \langle v_{3}, \tilde{v}_{1} \rangle$

Start with \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 .

Compute \mathbf{q}_1 , \mathbf{q}_2 , r_{11} , r_{12} and r_{22} the same way.

$$\tilde{\mathbf{q}}_3 = \mathbf{v}_3 - \langle \mathbf{v}_3, \mathbf{q}_1 \rangle \mathbf{q}_1 - \langle \mathbf{v}_3, \mathbf{q}_2 \rangle \mathbf{q}_2$$

Verify that $\tilde{\mathbf{q}}_3$ is perpendicular to \mathbf{q}_1 and \mathbf{q}_2 .

Start with \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 .

Compute \mathbf{q}_1 , \mathbf{q}_2 , r_{11} , r_{12} and r_{22} the same way.

$$\tilde{\mathbf{q}}_3 = \mathbf{v}_3 - \langle \mathbf{v}_3, \mathbf{q}_1 \rangle \mathbf{q}_1 - \langle \mathbf{v}_3, \mathbf{q}_2 \rangle \mathbf{q}_2$$

Verify that $\tilde{\mathbf{q}}_3$ is perpendicular to \mathbf{q}_1 and \mathbf{q}_2 .

Make it have unit length:

$$\mathbf{q}_3 = \tilde{\mathbf{q}}_3 / ||\tilde{\mathbf{q}}_3||_2$$

$$\mathbf{v}_3 = \langle \mathbf{v}_3, \mathbf{q}_1 \rangle \mathbf{q}_1 + \langle \mathbf{v}_3, \mathbf{q}_2 \rangle \mathbf{q}_2 + ||\tilde{\mathbf{q}}_3||_2 \mathbf{q}_3$$

$$r_{13} = \langle \mathbf{q}_1, \mathbf{v}_3 \rangle; \qquad r_{23} = \langle \mathbf{q}_2, \mathbf{v}_3 \rangle; \qquad r_{33} = ||\tilde{\mathbf{q}}_3||_2$$

Gramm Schmidt = QR Factorization

Starting from v_1 , v_2 , v_3 :

$$\mathbf{v}_{1} = r_{11}\mathbf{q}_{1}$$

$$\mathbf{v}_{2} = r_{12}\mathbf{q}_{1} + r_{22}\mathbf{q}_{2}$$

$$\mathbf{v}_{3} = r_{13}\mathbf{q}_{1} + r_{23}\mathbf{q}_{2} + r_{3}3\mathbf{q}_{3}$$

Gramm Schmidt = QR Factorization

Starting from v_1 , v_2 , v_3 :

$$\mathbf{v}_{1} = r_{11}\mathbf{q}_{1}$$

$$\mathbf{v}_{2} = r_{12}\mathbf{q}_{1} + r_{22}\mathbf{q}_{2}$$

$$\mathbf{v}_{3} = r_{13}\mathbf{q}_{1} + r_{23}\mathbf{q}_{2} + r_{3}3\mathbf{q}_{3}$$

$$[\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}] = [\mathbf{q}_{1}, \mathbf{q}_{2}, \mathbf{q}_{3}] \begin{pmatrix} r_{11} & r_{12} & r_{13} \\ 0 & r_{22} & r_{23} \\ 0 & 0 & r_{33} \end{pmatrix}$$

$$A = \begin{bmatrix} \vec{v}_{1, 1}, \vec{v}_{3} \end{bmatrix} \begin{bmatrix} \mathbf{q}_{1}, \mathbf{q}_{2}, \mathbf{q}_{3} \end{bmatrix} \begin{pmatrix} r_{11} & r_{12} & r_{13} \\ 0 & r_{22} & r_{23} \\ 0 & 0 & r_{33} \end{pmatrix}$$

Gramm Schmidt = *QR* Factorization

Quadratic Interpolation

