
Alternative Approach

Suppose we can find q�, . . . , qm that satisfy qi ⋅ q j = δi j and such

that

A = [q� . . . , qm]R
for an invertible upper triangular matrix R.

Q = [q� . . . , qm]; QTQ = I
Normal equation:

ATAx = Atb

Becomes (QR)T(QR)x = (QR)Tb

Then

Rx = QTb

We avoid forming ATA or anything that looks like a square of A.
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Gramm-Schmidt

Vectors v�, v�, linearly independent.

Goal: Find perpendicular unit vectors q�, q� such that the span of

the v’s is the same as the span of the q’s.

q̃� = v�
q� = q̃����q̃����

r�� = ��q̃����
v� = r��q�
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Gramm-Schmidt: More vectors!

Start with v�, v�, v�.

Compute q�, q�, r��, r�� and r�� the same way.

q̃� = v� − �v�, q��q� − �v�, q��q�
Verify that q̃� is perpendicular to q� and q�.

Make it have unit length:

q� = q̃����q̃����

v� = �v�, q��q� + �v�, q��q� + ��q̃����q�

r�� = �q�, v�� ; r�� = �q�, v�� ; r�� = ��q̃����
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Gramm Schmidt = QR Factorization

Starting from v�, v�, v�:

v� = r��q�
v� = r��q� + r��q�
v� = r��q� + r��q� + r��q�

[v�, v�, v�] = [q�, q�, q�]���
r�� r�� r��
� r�� r��
� � r��

���
If A = [v�, v�, v�],

A = QR

QTQ = I
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Quadratic Interpolation

Data points: (x�, y�), . . . , (x�, y�).
Let’s find a ’best fit’ quadratic polynomial. Ideally, find

c = [c�, c�, c�]T such that

c� + c�xk + c�x�k = yk
for each k.

Vc =
��������

� x� x��
� x� x��
� x� x��
� x� x��
� x� x��

��������
c =
��������

y�
y�
y�
y�
y�

��������
= y

We’ll minimize ��Vc − y����
instead.


