Least Squares Problems

Math 426
University of Alaska Fairbanks

October 23, 2020

Fitting points to a line

We have data $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$.

Want to find m and b so

$$
y_{k}=m x_{k}+b
$$

for $1 \leq k \leq n$.

Overdetermined equations

Data $\left(x_{1}, y_{1}\right), \ldots,\left(x_{4}, y_{4}\right)$.
Want to find m and b so

$$
y_{k}=m x_{k}+b
$$

for $1 \leq k \leq 4$.

$$
b+x_{1} m=y_{1}
$$

$$
\begin{aligned}
& \text { A } \\
& \stackrel{\left(\begin{array}{ll}
1 & x_{1} \\
1 & x_{2} \\
1 & x_{3} \\
1 & x_{4}
\end{array}\right)}{\binom{b}{m}}=\left(\begin{array}{l}
b+y_{2} m= \\
y_{1} \\
y_{2} \\
y_{3} \\
y_{4}
\end{array}\right) b+y_{2} \\
& \vec{y}\}+x_{4} m=y_{4} \\
& \text { his! } \quad \vec{W}
\end{aligned}
$$

Minimize Error Intead

$$
\mathbf{w}=(b, m)^{T}, \mathbf{y}=\left(y_{1}, \ldots, y_{4}\right)^{T} \quad \text { A } \vec{w}=\vec{y}
$$

Strategy: minimize

$$
\|A \mathbf{w}-\mathbf{y}\|_{2}
$$

instead.

$$
\underbrace{A \stackrel{\rightharpoonup}{w}-\vec{y}}_{\downarrow}
$$

small as possible.

$$
\mathbf{w}=(b, m)^{T}, \mathbf{y}=\left(y_{1}, \ldots, y_{4}\right)^{T}
$$

Strategy: minimize

$$
\|A \mathbf{w}-\mathbf{y}\|_{2}
$$

f hus a mincuecrn at $t=0$.
instead.
Same as minimizing $\|A \mathbf{w}-\mathbf{y}\|_{2}^{2}$.
Suppose \mathbf{x} is a minimizer and \mathbf{v} is an arbitrary vector. Consider

$$
f(t)=\|A(x+t v)-\mathbf{y}\|_{2}^{2}
$$

Then $f^{\prime}(0)=0$.

$$
\|(A \vec{x}+t \vec{v})-\vec{y}\|_{2}^{2}
$$

$$
f(0)=\|A \vec{x}-\vec{y}\|_{2}^{2}<\begin{gathered}
\text { lent } \\
\text { values. }
\end{gathered}
$$

Normal Equation

$$
\begin{aligned}
& f(t)=\underline{\left(A\left(x+t_{v}\right)-y\right)^{\top} \cdot} \cdot\left(A\left(x_{x}(t)-y\right)\right.
\end{aligned}
$$

$$
\begin{aligned}
& f^{\prime}(0)=0 \\
& f^{\prime}(0)=2(A x-y) \cdot A v=2 v^{T} A^{T}(A x-y) A_{y}+t A v-y \\
& f^{\prime}(0)=2 \nu^{\top}\left(A^{\top}\right)\left(A_{x}-y\right) \\
& \text { If this holds for all } \mathbf{v} \\
& A^{T} A x=-A^{T} y \quad z \cdot w=w \cdot z \\
& \text { This is called the normal equation. } \quad Z^{\top} \omega=\omega^{\top} Z \\
& \nu^{\top} A^{\top}(A x-y)=0 \text { for all } \vec{v}
\end{aligned}
$$

Normal Equation

$$
\begin{aligned}
& \qquad \begin{array}{r}
A^{\top}(A x-y)=0 \\
f(t)=\|A(\mathbf{x}+t \mathbf{v})-\mathbf{y}\|_{2}^{2} \\
f^{\prime}(0)=0 \\
f^{\prime}(0)=2(A \mathbf{x}-\mathbf{y}) \cdot A \mathbf{v}=2 \mathbf{v}^{T} A^{T}
\end{array} \\
& \qquad A^{T} A \mathbf{x}= \pm_{A^{T} \mathbf{y}}
\end{aligned}
$$

If this holds for all \mathbf{v}

Normal Equation has a Square

$$
A^{T} A \mathbf{x}=\dagger A^{T} \mathbf{y}
$$

Sadly:

$$
\kappa_{2}\left(A^{T} A\right)=\kappa_{2}(A)^{2}
$$

Suppose $\kappa(A)=10^{4}$. In double precision you expect precision $\approx 10^{-12}$ for $A \mathbf{x}=\mathbf{b}$ but only 10^{-8} for $A^{T} A$.

Alternative Approach
Suppose we can find $\mathbf{q}_{1}, \ldots, \mathbf{q}_{m}$ that satisfy $\mathbf{q}_{i} \cdot \mathbf{q}_{j}=\delta_{i j}$ and such that

$$
A=\left[\mathbf{q}_{1} \ldots, \mathbf{q}_{m}\right] R
$$

for an invertible upper triangular matrix R.

