Condition Numbers and Stability

Math 426
University of Alaska Fairbanks

October 19, 2020

HW 6: \quad LU $\quad L^{\top} L$
Code: please add tests.

$$
\operatorname{myiuv}(A) \rightarrow B
$$

$$
\begin{aligned}
A \cdot B= & \frac{I}{\uparrow} \\
(A \cdot B-I & \underset{\sim 10^{-16}}{ } \quad \operatorname{norm}(\cdot, \operatorname{Inf})
\end{aligned}
$$

$$
\begin{gathered}
A=\left[\vec{b}_{1}, \ldots, \vec{b}_{n}\right] \\
A B=\left[A \vec{b}_{1}, \ldots, A \vec{b}_{n}\right]=\left[\vec{e}_{1}, \ldots, \vec{e}_{n}\right] \\
A \overrightarrow{b_{1}}=\vec{c}_{1} \\
\vdots \\
A b_{n}=\vec{e}_{n}
\end{gathered} \begin{array}{r}
\text { 1) } L U=A \\
\text { 2) Loop: on } k \\
\text { Solve } A \vec{b}_{k}=\vec{e}_{k} \\
L \vec{c}_{k}=\vec{e}_{k} \\
U b_{k}=\vec{c}_{C}
\end{array}
$$

1) $L U=A^{O\left(n^{3}\right)}$
2) Loop: on k Solve $A b_{k}=\dot{e}_{k}$ $L \vec{c}_{k}=\vec{e}_{k}$
$U b_{k}=\vec{C}_{k}$

$$
O\left(n^{3}\right) \quad \begin{aligned}
& n=10 \\
& n=100
\end{aligned}
$$

1) Loop
a) $L U=A$
b) Solve

$$
\begin{aligned}
& L \vec{c}_{k}=\vec{e}_{k} \\
& U l_{k}=\vec{c}_{k}
\end{aligned}
$$

$O\left(n^{4}\right)$

$$
\begin{aligned}
& \text { plsolve }(P, L, b) \quad P=\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right) \\
& \left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)\left(\begin{array}{l}
b_{1} \\
b_{1} \\
b_{3}
\end{array}\right)=\left(\begin{array}{l}
b_{3} \\
b_{1} \\
b_{2}
\end{array}\right) \\
& \vec{p}=\left(\begin{array}{l}
3 \\
1 \\
2
\end{array}\right) \\
& \hat{b}=P b \\
& P \leadsto 300 \mathrm{Mb} \quad L_{x}=\hat{b}
\end{aligned}
$$

Eigenvalue Refresher

A vector \mathbf{x} is an eigenvector of A if there is a number λ such that

$$
A \mathbf{x}=\lambda \mathbf{x} .
$$

Picture:

$$
\begin{array}{ll}
n \times n & \text { at most } \\
& n \text { eigenulues }
\end{array}
$$

Eigenvalue Refresher

A vector \mathbf{x} is an eigenvector of A if there is a number λ such that

$$
A \mathbf{x}=\lambda \mathbf{x} .
$$

Picture:
e.g.

$$
A=\left(\begin{array}{cc}
3 & 0 \\
0 & 1 / 2
\end{array}\right)
$$

Eigenvalue Refresher

A vector \mathbf{x} is an eigenvector of A if there is a number λ such that

$$
A \mathbf{x}=\lambda \mathbf{x} .
$$

Picture:
e.g.

$$
A=\left(\begin{array}{cc}
3 & 0 \\
0 & 1 / 2
\end{array}\right)
$$

e.g.

$$
A=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
$$

Computing the 2-norm

The 2-norm of a matrix is the square root of the largest eigenvalue of $A^{T} A$.

Computing the 2-norm

$$
\begin{aligned}
& \lambda=22.9 \\
& \lambda=68.1 \\
& A=\left(\begin{array}{cc}
1 & 2 \\
-3 & 4 \\
5 & 6
\end{array}\right) \\
& \|A\|_{2}=8.2 \\
& A^{\top} A=\left[\begin{array}{ll}
35 & 20 \\
20 & 56
\end{array}\right] \\
& A^{T} A=\ldots \\
& A^{\top} A x=\lambda x \\
& \left(A^{\top} A-\lambda I\right) x=0 \\
& {\left.\left[\begin{array}{ll}
35-\lambda & 20 \\
20 & 56-\lambda
\end{array}\right] \right\rvert\,=(35-\lambda)(56-\lambda)-400}
\end{aligned}
$$

Computing the 2-norm

$$
\begin{gathered}
A=\left(\begin{array}{cc}
1 & 2 \\
-3 & 4 \\
5 & 6
\end{array}\right) \\
A^{T} A=\cdots
\end{gathered}
$$

Now compute eigenvalues.

Condition Number

Want to solve $A \mathbf{x}=\mathbf{b}$.
Solve $A \mathbf{y}=\mathbf{b}+\Delta \mathbf{b}$ with $\mathbf{y}=\mathbf{x}+\Delta \mathbf{x}$

$$
\begin{aligned}
\|\Delta \mathbf{x}\| & =\left\|A^{-1} \Delta \mathbf{b}\right\| \\
\|\mathbf{b}\| & =\|A \mathbf{x}\|
\end{aligned}
$$

For all \mathbf{y} and \mathbf{w} :

$$
\begin{array}{r}
\left\|A^{-1} \mathbf{y}\right\| \leq\left\|A^{-1}\right\|\|y\| \\
\|A \boldsymbol{w}\| \leq\|A\|\|\boldsymbol{w}\|
\end{array}
$$

Condition Number

Want to solve $A \mathbf{x}=\mathbf{b}$.
Solve $A \mathbf{y}=\mathbf{b}+\Delta \mathbf{b}$ with $\mathbf{y}=\mathbf{x}+\Delta \mathbf{x}$

$A \Delta x=\Delta 6$

$$
\begin{aligned}
\|\Delta \mathbf{x}\| & =\left\|A^{-1} \Delta \mathbf{b}\right\| \\
\|\mathbf{b}\| & =\|A \mathbf{x}\|
\end{aligned}
$$

For all \mathbf{y} and \mathbf{w} :

$$
\begin{array}{r}
\left\|A^{-1} \mathbf{y}\right\| \leq\left\|A^{-1}\right\|\|\mathbf{y}\| \\
\|A \mathbf{w}\| \leq\|A\|\|\mathbf{w}\|
\end{array}
$$

$$
g^{\| A x}\|\leq\| A J\| \| x \|
$$

$$
\frac{\|\Delta \mathbf{x}\|}{\|\mathbf{x}\|} \leq\left\|A^{-1}\right\| \frac{\|\Delta \mathbf{b}\|}{\|\mathbf{x}\|} \leq\left\|A^{-1}\right\| \frac{\|\Delta \mathbf{b}\|}{\|\mathbf{b}\|} \frac{\|\mathbf{b}\|}{\|\mathbf{x}\|}=\left\|A^{-1}\right\| \frac{\|\Delta \mathbf{b}\|}{\|\mathbf{b}\|} \frac{\|A \mathbf{x}\|}{\|\mathbf{x}\|} \leq\|A\|\left\|A^{-1}\right\| \frac{\|\Delta \mathbf{b}\|}{\|\mathbf{b}\|}
$$

Condition Number

Want to solve $A \mathbf{x}=\mathbf{b}$.
Solve $A \mathbf{y}=\mathbf{b}+\Delta \mathbf{b}$ with $\mathbf{y}=\mathbf{x}+\Delta \mathbf{x}$

$$
\begin{aligned}
\|\Delta \mathbf{x}\| & =\left\|A^{-1} \Delta \mathbf{b}\right\| \\
\|\mathbf{b}\| & =\|A \mathbf{x}\|
\end{aligned}
$$

For all \mathbf{y} and \mathbf{w} :

$$
\begin{array}{r}
\left\|A^{-1} \mathbf{y}\right\| \leq\left\|A^{-1}\right\|\|\mathbf{y}\| \\
\|A \mathbf{w}\| \leq\|A\|\|\mathbf{w}\|
\end{array}
$$

$$
\frac{\|\Delta \mathbf{x}\|}{\|\mathbf{x}\|} \leq\left\|A^{-1}\right\| \frac{\|\Delta \mathbf{b}\|}{\|\mathbf{x}\|} \leq\left\|A^{-1}\right\| \frac{\|\Delta \mathbf{b}\| \|}{\|\mathbf{b}\|} \frac{\|\mathbf{b}\|}{\|\mathbf{x}\|}=\left\|A^{-1}\right\| \frac{\|\Delta \mathbf{b}\|}{\|\mathbf{b}\|} \frac{\|A \mathbf{x}\|}{\|\mathbf{x}\|} \leq\|A\|\left\|A^{-1}\right\| \frac{\|\Delta \mathbf{b}\|}{\|\mathbf{b}\|}
$$

Condition Number

$$
\sum_{\substack{\kappa \\ \rho}}^{p}\|A\|_{p}\left\|A^{-1}\right\|_{p}
$$

is the called the condition number of A (with respect to the p norm).

When solving $A(\mathbf{x}+\Delta \mathbf{x})=\mathbf{b}+\Delta \mathbf{b}$,

ε

$$
\frac{\|\Delta \mathbf{x}\|_{p}}{\|x\|_{p}} \leq \kappa \frac{\|\Delta \mathbf{b}\|_{p}}{\|b\|_{p}}
$$

It tells you how relative error scales from the input \mathbf{b} to the output \mathbf{x}.
Sunller is butter!

Matlab Demo

Error in A

Suppose we solve:

$$
(A+\Delta A)(\mathbf{x}+\Delta \mathbf{x})=\mathbf{b}
$$

The relative error in \mathbf{x} is still controlled by the condition number:

$$
\frac{\|\Delta x\|}{\|x\|} \leq \kappa \int-|\kappa||\Delta A \lambda| / / \| A A|/| \frac{\|\Delta A\|}{\|A\|}
$$

Conditioning vs. Stability

Recall

$$
A=\left(\begin{array}{cc}
10^{-20} & 1 \\
1 & 1
\end{array}\right) \quad A^{-1}=-\frac{1}{1-10^{-10}}\left(\begin{array}{cc}
1 & -1 \\
-1 & 10^{-20}
\end{array}\right)
$$

$\|A\|_{\infty}=2$ and $\left\|A^{-1}\right\|_{\infty} \approx 2$ so $\kappa(A) \approx 4$. This matrix is well conditioned. We expect when solving $A \mathbf{x}=\mathbf{b}$ that

$$
\frac{\|\Delta \mathbf{x}\|_{\infty}}{\|x\|_{\infty}} \approx \kappa \epsilon
$$

Conditioning vs. Stability

Recall

$$
A=\left(\begin{array}{cc}
10^{-20} & 1 \\
1 & 1
\end{array}\right) \quad A^{-1}=-\frac{1}{1-10^{-10}}\left(\begin{array}{cc}
1 & -1 \\
-1 & 10^{-20}
\end{array}\right)
$$

$\|A\|_{\infty}=2$ and $\left\|A^{-1}\right\|_{\infty} \approx 2$ so $\kappa(A) \approx 4$. This matrix is well conditioned. We expect when solving $A \mathbf{x}=\mathbf{b}$ that

$$
\frac{\|\Delta \mathbf{x}\|_{\infty}}{\|x\|_{\infty}} \approx \kappa \epsilon
$$

Instead: found a relative error of size 1.

$$
1 \text { us } 10^{-16}
$$

Conditioning vs. Stability

Recall

$$
A=\left(\begin{array}{cc}
10^{-20} & 1 \\
1 & 1
\end{array}\right) \quad A^{-1}=-\frac{1}{1-10^{-10}}\left(\begin{array}{cc}
1 & -1 \\
-1 & 10^{-20}
\end{array}\right)
$$

$\|A\|_{\infty}=2$ and $\left\|A^{-1}\right\|_{\infty} \approx 2$ so $\kappa(A) \approx 4$. This matrix is well conditioned. We expect when solving $A \mathbf{x}=\mathbf{b}$ that

$$
\frac{\|\Delta \mathbf{x}\|_{\infty}}{\|x\|_{\infty}} \approx \kappa \epsilon
$$

Instead: found a relative error of size 1.
We did a lousy job even though we could have been reasonably expected to do a good job. This is an example of instability.

