Condition Numbers and Stability

Math 426
University of Alaska Fairbanks

October 16, 2020

How big is a vector?

$$
\frac{|\Delta \mathbf{x}|}{|\mathbf{x}|}=\kappa \frac{|\Delta \mathbf{b}|}{|\mathbf{b}|}
$$

How big is a vector?

$$
\begin{aligned}
& \sqrt{|\Delta \mathbf{x}|}|\overrightarrow{|x|} \neq||\Delta|| b| \\
& \mathbf{b}=\binom{2}{-1 / 3}
\end{aligned} \quad \begin{gathered}
A x=b \\
\uparrow \\
b+(\Delta b
\end{gathered}
$$

How big is a vector?

$$
\begin{gathered}
\frac{|\Delta \mathbf{x}|}{|\mathbf{x}|}=\kappa \frac{|\Delta \mathbf{b}|}{|\mathbf{b}|} \\
\mathbf{b}=\binom{2}{-1 / 3}
\end{gathered}
$$

How big is \mathbf{b} ? Three common measures.

How big is a vector?

$$
\begin{gathered}
\frac{|\Delta \mathbf{x}|}{|\mathbf{x}|}=\kappa \frac{|\Delta \mathbf{b}|}{|\mathbf{b}|} \\
\mathbf{b}=\binom{2}{-1 / 3}
\end{gathered}
$$

How big is \mathbf{b} ? Three common measures.
One-norm:

$$
\|\mathbf{b}\|_{1}=|2|+\left|-\frac{1}{3}\right|=2 \frac{1}{3}=2 . \overline{3}
$$

How big is a vector?

$$
\begin{gathered}
\frac{|\Delta \mathbf{x}|}{|\mathbf{x}|}=\kappa \frac{|\Delta \mathbf{b}|}{|\mathbf{b}|} \\
\mathbf{b}=\binom{2}{-1 / 3}
\end{gathered}
$$

How big is \mathbf{b} ? Three common measures.
One-norm:

$$
\|\mathbf{b}\|_{1}=|2|+\left|-\frac{1}{3}\right|=2 \frac{1}{3}=2 . \overline{3}
$$

∞-norm:

$$
\|\mathbf{b}\|_{\infty}=\max \left(|2|,\left|-\frac{1}{3}\right|\right)=2
$$

How big is a vector?

$$
\begin{aligned}
& \frac{|\Delta \mathbf{x}|}{|\mathbf{x}|}=\kappa \frac{|\Delta \mathbf{b}|}{|\mathbf{b}|} \\
& \mathbf{b}=\binom{2}{-1 / 3}=\binom{b_{1}}{b_{2}}
\end{aligned}
$$

How big is \mathbf{b} ? Three common measures.
One-norm:

$$
\|\mathbf{b}\|_{1}=|2|+\left|-\frac{1}{3}\right|=2 \frac{1}{3}=2 . \overline{3}
$$

∞-norm:

$$
\|\mathbf{b}\|_{\infty}=\max \left(|2|,\left|-\frac{1}{3}\right|\right)=2
$$

2-norm:

$$
\|\mathbf{b}\|_{2}=\sqrt{b_{1}^{2}+b_{2}^{2}}=\left(4+\frac{1}{9}\right)^{\frac{1}{2}} \approx 2.03
$$

Motivating Condition Number

$$
\begin{array}{ll}
\|\Delta \mathbf{x}\|=\left\|A^{-1} \Delta \mathbf{b}\right\| & A_{x}=b \\
\|\mathbf{b}\|=\|A \mathbf{x}\| & A_{y}=b+\Delta b \\
& \mathrm{~b}_{y} y=x+\Delta x \\
\left\|A^{-1} \mathbf{y}\right\| \leq M\|\mathbf{y}\| & A \Delta_{x}=\Delta b \\
\|A \mathbf{w}\| \leq C\|\boldsymbol{w}\| & \Delta x=A^{-1} \Delta b
\end{array}
$$

Suppose
no matter what \mathbf{y} and \mathbf{w} are.

Motivating Condition Number

$$
\begin{aligned}
\|\Delta \mathbf{x}\| & =\left\|A^{-1} \Delta \mathbf{b}\right\| \\
\|\mathbf{b}\| & =\|A \mathbf{x}\|
\end{aligned}
$$

Suppose

$$
\begin{aligned}
\left\|A^{-1} \mathbf{y}\right\| & \leq M\|\mathbf{y}\| \\
\|A \mathbf{w}\| & \leq C\|\mathbf{w}\|
\end{aligned}
$$

no matter what \mathbf{y} and \mathbf{w} are.

$$
\|\Delta \mathbf{x}\|=\left\|A^{-1} \Delta \mathbf{b}\right\| \leq M\|\Delta \mathbf{b}\|
$$

Motivating Condition Number

$$
\begin{aligned}
\|\Delta \mathbf{x}\| & =\left\|A^{-1} \Delta \mathbf{b}\right\| \\
\|\mathbf{b}\| & =\|A \mathbf{x}\|
\end{aligned}
$$

Suppose

$$
\begin{aligned}
\left\|A^{-1} \mathbf{y}\right\| & \leq M\|\mathbf{y}\| \\
\|A \mathbf{w}\| & \leq C\|\mathbf{w}\|
\end{aligned}
$$

no matter what \mathbf{y} and \mathbf{w} are.

$$
\begin{array}{r}
\|\Delta \mathbf{x}\|=\left\|A^{-1} \Delta \mathbf{b}\right\| \leq M\|\Delta \mathbf{b}\| \\
\frac{\|\Delta \mathbf{x}\|}{\|\mathbf{x}\|} \leq M \frac{\|\Delta \mathbf{b}\|}{\|\mathbf{x}\|} \overline{\overline{\mathbf{x}}} M \frac{\|\Delta \mathbf{b}\|\| \| \mathbf{b} \|}{\|\mathbf{b}\|} \frac{\|x\|}{\|\mathbf{x}\|}=M \frac{\|\Delta \mathbf{b}\|}{\|\mathbf{b}\|} \frac{\|A \mathbf{x}\|}{\|\mathbf{x}\|} \leq C M \frac{\|\Delta \mathbf{b}\|}{\|\mathbf{b}\|}
\end{array}
$$

Matrix Norms

Suppose

$$
\|A \mathbf{w}\|_{1} \leq C\|\mathbf{w}\|_{1}
$$

no matter what \mathbf{w} is. Then, if $\mathbf{w} \neq 0$,

$$
\frac{\|A \mathbf{w}\|_{1}}{\|\mathbf{w}\|_{1}} \leq C
$$

so long as $\mathbf{w} \neq 0$.

Matrix Norms

$$
\frac{\|A c w\|}{\|c w\|}=\frac{\mid c\|A v\|}{|c|\|w\|}
$$

The 1-norm of A is the smallest C that works in this inequality.

$$
\left.\|A\|_{1}=\max _{\mathbf{w} \neq 0}\left(\frac{\|A \mathbf{w}\|_{1}}{\|\mathbf{w}\|_{1}}\right) \cdot\right)\|w\|_{1}=1
$$

Matrix Norms

Suppose

$$
\|A \mathbf{w}\|_{1} \leq C\|\mathbf{w}\|_{1}
$$

no matter what \mathbf{w} is. Then, if $\mathbf{w} \neq 0$,

$$
\frac{\|A \mathbf{w}\|_{1}}{\|\mathbf{w}\|_{1}} \leq C
$$

so long as $\mathbf{w} \neq 0$.

The 1 -norm of A is the smallest C that works in this inequality.

$$
\|A\|_{1}=\max _{\mathbf{w} \neq 0}\left(\frac{\|A \mathbf{w}\|_{1}}{\|\mathbf{w}\|_{1}}\right) \rightarrow \max _{\|w\|_{l}=1}\|A w\|_{l}
$$

We only need to work with $\|\mathbf{w}\|_{1}=1$:

Matrix Norms

$$
\|A\|=\max _{\|\mathbf{w}\|=1}\|A w\|
$$

What does this measure?
If you start with some thug (ω) of length 1, how long can Aw possibly be?

Matrix Norms

$$
\|A\|=\max _{\|\mathbf{w}\|=1}\|A w\|
$$

What does this measure?
If you start with a size 1 vector, what's the largest length that A can make it grow (or shrink) to?

Picture: $\|A\|_{1}$

Picture: $\|A\|_{\infty}$

How to compute $\|A\|_{1}$

$$
\begin{array}{ll}
\text { Suppose } \\
\text { and } \\
A \vec{w} \\
\left.\hline \mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right]
\end{array} \|
$$

How to compute $\|A\|_{1}$
Suppose

$$
A=\left[\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right]
$$

$$
\|\mathbf{w}\|_{1}=1 \quad\|a+b\|_{l} \leq\|a\|_{l}+\|b\|_{1}
$$

Let $M=\max \left(\left\|\mathbf{v}_{k}\right\|_{1}\right)$. Then

$$
\left.\begin{aligned}
& \begin{aligned}
&\|A \mathbf{w}\|_{1}=\left\|w_{1} \mathbf{v}_{1}+\cdots w_{n} \mathbf{v}_{n}\right\|_{1} \\
& \leq\left|w_{1}\left\|\mathbf{v}_{1}\right\|_{1}+\cdots\right| w_{n}\left\|\mathbf{v}_{n}\right\|_{1} \\
& \leq\left|w_{1}\right| M+\cdots+\left|w_{n}\right| M \\
&=M
\end{aligned}\left\|w _ { 1 } \left|\|_{1}=\left|w_{1}\right|+\cdots+\left|w_{n}\right|\right.\right. \\
& \left(\left|w_{1}\right| \|_{1}=1\right.
\end{aligned} \right\rvert\,
$$

How to compute $\|A\|_{1}$

Suppose

$$
A=\left[\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right]
$$

and

$$
\|\mathbf{w}\|_{1}=1
$$

Let $M=\max \left(\left\|\mathbf{v}_{k}\right\|_{1}\right)$. Then

$$
A_{w}=V_{k}
$$

$$
\begin{aligned}
\|A \mathbf{w}\| & =\left\|w_{1} \mathbf{v}_{1}+\cdots w_{n} \mathbf{v}_{n}\right\| \\
& \leq\left|w_{1}\right|\left\|\mathbf{v}_{1}\right\|\left\|_{1}+\cdots \mid w_{n}\right\| \mathbf{v}_{n} \| \\
& \leq\left|w_{1}\right| M+\cdots+\left|w_{n}\right| M \\
& =M
\end{aligned}
$$

And if $M=\left\|\mathbf{v}_{k}\right\|_{1}$ for some k, let $w=\mathbf{e}_{k}$ to get equality.

How to compute $\|A\|_{1}$

Suppose

$$
A=\left[\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right]
$$

and

Let $M=\max \left(\left\|\mathbf{v}_{k}\right\|_{1}\right)$. Then $A=\left[\begin{array}{cc}1 & 2 \\ -3 & 4 \\ 5 & 6\end{array}\right]$

$$
\begin{aligned}
\|A \mathbf{w}\| & =\left\|w_{1} \mathbf{v}_{1}+\cdots w_{n} \mathbf{v}_{n}\right\| \\
& \leq\left|w_{1}\right|\left\|\mathbf{v}_{1}\right\|_{1}+\cdots\left|w_{n}\right|\left\|\mathbf{v}_{n}\right\| \quad \text { q, } 12 \\
& \leq\left|w_{1}\right| M+\cdots+\left|w_{n}\right| M \\
& =M
\end{aligned}\|A\|_{1}=12
$$

And if $M=\left\|\mathbf{v}_{k}\right\|_{1}$ for some k, let $w=\mathbf{e}_{k}$ to get equality.

$$
\|A\|_{1}=\max _{k}\left(\left\|\mathbf{v}_{k}\right\|_{1}\right)
$$

$$
\begin{aligned}
& \left.A=\left[\begin{array}{rr}
1 & 2 \\
-3 & 4 \\
5 & 6
\end{array}\right] \quad w=\left(\begin{array}{l}
0 \\
1
\end{array}\right] \quad\|w\|_{\|}=|0|+11 \right\rvert\,=1 \\
& A_{w}=\left[\begin{array}{l}
2 \\
4 \\
6
\end{array}\right] \longleftrightarrow \\
& \longrightarrow \|_{1}=12
\end{aligned}
$$

How to compute $\|A\|_{\infty}$

Suppose

$$
\vec{w}=\left(\begin{array}{c}
-3.2 \\
6.1 \\
-7.8
\end{array}\right)
$$

$$
A=\left(\begin{array}{cc}
1 & 2 \\
-3 & 4 \\
5 & 6
\end{array}\right) \quad\|\vec{w}\|_{\infty}=7.8
$$

and $\mathbf{w}=\left[w_{\mathrm{c}}, w_{2}, \psi_{m}\right]^{T}$ has $\|\mathbf{w}\|_{\infty}=1$.

$$
\left.\Delta A \omega\left\|_{\infty}=\right\|\left[\begin{array}{cc}
1 \cdot w_{1}+2 w_{2} \\
-3 w_{1}+4 w_{2} \\
5 w_{1}+6 w_{2}
\end{array}\right] \right\rvert\, \begin{array}{ll}
\in 3 & 3=|1|+|2| \\
\in 7 & 7=|-3|+|4| \\
\epsilon 1 \mid & 11=|5|+16 \mid \\
\in \infty & 1
\end{array}
$$

$\|A\|_{\infty} \rightarrow$ max 1 -nom of rows of A.

How to compute $\|A\|_{\infty}$

Suppose

$$
A=\left(\begin{array}{cc}
1 & 2 \\
-3 & 4 \\
5 & 6
\end{array}\right)
$$

and $\mathbf{w}=\left[w_{1}, w_{2}, w_{3}\right]^{T}$ has $\|\mathbf{w}\|_{\infty}=1$.
Let's compute $\|A \mathbf{w}\|_{\infty}$:

How to compute $\|A\|_{\infty}$

Suppose

$$
A=\left(\begin{array}{cc}
1 & 2 \\
-3 & 4 \\
5 & 6
\end{array}\right)
$$

and $\mathbf{w}=\left[w_{1}, w_{2}, w_{3}\right]^{T}$ has $\|\mathbf{w}\|_{\infty}=1$.
Let's compute $\|A \mathbf{w}\|_{\infty}$:
$\|A\|_{\infty}$ is the maximum 1-norm of the rows of A.

Eigenvalue Refresher

A vector \mathbf{x} is an eigenvector of A if there is a number λ such that

$$
A \mathbf{x}=\lambda \mathbf{x} .
$$

Picture:

Eigenvalue Refresher

A vector \mathbf{x} is an eigenvector of A if there is a number λ such that

$$
A \mathbf{x}=\lambda \mathbf{x} .
$$

Picture:

egg.

$$
\begin{aligned}
& \vec{x}=\binom{1}{0} \quad A=\left(\begin{array}{ll}
0 & 0 \\
0 & 1 / 2
\end{array}\right) \\
& \vec{x}=\left(\begin{array}{ll}
3 & 0 \\
0 & 1 / 2
\end{array}\right)\binom{1}{0}=\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right), \lambda=1 / 2 \quad\binom{1}{0} \\
& 0 \quad\binom{0}{4_{2}}=1 / 2\binom{0}{1}
\end{aligned}
$$

Eigenvalue Refresher

A vector \mathbf{x} is an eigenvector of A if there is a number λ such that

$$
A \mathbf{x}=\lambda \mathbf{x} .
$$

Picture:
e.g.
e.g.

$$
\binom{r}{i}
$$

The 2-norm of a matrix is the square root of the largest eigenvalue of $A^{T} A$.

$$
\begin{gathered}
(A d)^{\top}=w^{\top} A^{\top} \\
\|A \mathbf{w}\|_{2}^{2}=(A \mathbf{w}) \cdot(A \mathbf{w})=\mathbf{w}^{T} A^{T} A \mathbf{w}
\end{gathered}
$$

If $A^{T} A \mathbf{w}=\lambda \mathbf{w}$ then

$$
\begin{aligned}
\mathbf{w}^{T} A^{T} A \mathbf{w}=\lambda \mathbf{w}^{T} \mathbf{w} & =\lambda\|\mathbf{w}\|_{2}^{2} \\
\omega \cdot w & \|A w\|_{2}^{2}=\lambda\|w\|_{2}^{2} \\
\frac{\|A \mathbf{w}\|_{2}}{\|\mathbf{w}\|_{w}}=\sqrt{\lambda} & \|A w\|_{2}^{2}=\sqrt{\lambda}\|w\|_{2}
\end{aligned}
$$

So

$$
\|A\|_{2} \leq \sqrt{\lambda}
$$

$$
\begin{aligned}
& B^{\top}=B^{\|\omega\|_{2}=1}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \\
& \left(A^{\top} A\right)^{\top}=A^{\top} \cdot\left(A^{\top}\right)^{\top}=A^{\top} A
\end{aligned}
$$

$\rightarrow n \times 1$ There is a buins of n orthorgand eisen vectors.

