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How big is a vector?
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Motivating Condition Number
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Matrix Norms

Suppose

[ Awl[; < Cllwll,

no matter what wis. Then, if w0,

so long as w # 0.

The 1-norm of A is the smallest C that works in this inequality.
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We only need to work with ||w||; = I:
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What does this measure?

If you start with a size 1 vector, what's the largest length that A
can make it grow (or shrink) to?
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How to compute ||Al|;
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and w = [wi, wa, w31 has [[w]|e = 1.

Let's compute ||[AW]||oo:

|A||co is the maximum I-norm of the rows of A.
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Computing the 2-norm

The 2-norm of a matrix is the square root of the largest eigenvalue
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