## Condition Numbers and Stability

Math 426

University of Alaska Fairbanks

October 14, 2020

$$A\mathbf{x} = \mathbf{b}$$

how big a mistake are we making?

#### $A\mathbf{x} = \mathbf{b}$

how big a mistake are we making?

We can't represent **b** exactly (roundoff error)

#### $A\mathbf{x} = \mathbf{b}$

how big a mistake are we making?

We can't represent **b** exactly (roundoff error)

We can't represent A or  $\mathbf{x}$  exactly either!

#### $A\mathbf{x} = \mathbf{b}$

how big a mistake are we making?

We can't represent **b** exactly (roundoff error)

We can't represent A or  $\mathbf{x}$  exactly either!

We discussed partial pivoting because we saw that roundoff error in A led to spectacular failures otherwise. But we have no proof that partial pivoting is a perfect remedy.

#### $A\mathbf{x} = \mathbf{b}$

how big a mistake are we making?

We can't represent **b** exactly (roundoff error)

We can't represent A or  $\mathbf{x}$  exactly either!

We discussed partial pivoting because we saw that roundoff error in A led to spectacular failures otherwise. But we have no proof that partial pivoting is a perfect remedy. (Spoiler alert: there is no perfect remedy)

$$A\mathbf{x} = \mathbf{b}$$

$$A\mathbf{x} = \mathbf{b}$$

We actually solve

$$A\mathbf{y} = \mathbf{b} + \Delta \mathbf{b}$$

where  $\Delta \mathbf{b}$  is the error in  $\mathbf{b}$ .

$$A\mathbf{x} = \mathbf{b}$$

We actually solve

$$A\mathbf{y} = \mathbf{b} + \Delta \mathbf{b}$$

where  $\Delta \mathbf{b}$  is the error in  $\mathbf{b}$ .

We write

$$\mathbf{y} = \mathbf{x} + \Delta \mathbf{x}$$

where  $\Delta \mathbf{x}$  is the error in  $\mathbf{x}$ .

$$A\mathbf{x} = \mathbf{b}$$

We actually solve

$$A\mathbf{y} = \mathbf{b} + \Delta \mathbf{b}$$

where  $\Delta \mathbf{b}$  is the error in  $\mathbf{b}$ .

We write

$$\mathbf{y} = \mathbf{x} + \Delta \mathbf{x}$$

where  $\Delta \mathbf{x}$  is the error in  $\mathbf{x}$ .

How big is the error  $\Delta \mathbf{x}$  compared to the error  $\Delta \mathbf{b}$ ?

## Condition number, vaguely

$$A\mathbf{x} = \mathbf{b}$$
$$A\mathbf{y} = \mathbf{b} + \Delta \mathbf{b}$$
$$\mathbf{y} = \mathbf{x} + \Delta \mathbf{x}$$

How big is the error  $\Delta \mathbf{x}$  compared to the error  $\Delta \mathbf{b}$ ?

## Condition number, vaguely

 $A\mathbf{x} = \mathbf{b}$  $A\mathbf{y} = \mathbf{b} + \Delta \mathbf{b}$  $\mathbf{y} = \mathbf{x} + \Delta \mathbf{x}$ 



The value C would tell us how the error in **b** magnified (or shrunk!) to become the error  $\Delta \mathbf{x}$ . The constant C plays a role that would be called the **absolute condition number**.

## Condition number, vaguely

 $A\mathbf{x} = \mathbf{b}$  $A\mathbf{y} = \mathbf{b} + \Delta \mathbf{b}$  $\mathbf{y} = \mathbf{x} + \Delta \mathbf{x}$ 

How big is the error  $\Delta \mathbf{x}$  compared to the error  $\Delta \mathbf{b}$ ?

If  $\Delta \boldsymbol{x}$  and  $\Delta \boldsymbol{b}$  were numbers

 $|\Delta \mathbf{x}| = C |\Delta \mathbf{b}|$ 

The value *C* would tell us how the error in **b** magnified (or shrunk!) to become the error  $\Delta \mathbf{x}$ . The constant *C* plays a role that would be called the **absolute condition number**.

An ongoing theme: relative errors are more relevant than absolute errors.

$$\frac{|\Delta \mathbf{x}|}{|\mathbf{x}|} = \kappa \frac{|\Delta \mathbf{b}|}{|\mathbf{b}|}$$

Key concept: relative condition number (to be defined).

$$\frac{|\Delta \mathbf{x}|}{|\mathbf{x}|} = \kappa \frac{|\Delta \mathbf{b}|}{|\mathbf{b}|}$$

$$\frac{|\Delta \mathbf{x}|}{|\mathbf{x}|} = \kappa \frac{|\Delta \mathbf{b}|}{|\mathbf{b}|}$$

$$\mathbf{b} = \begin{pmatrix} 2\\ -1/3 \end{pmatrix} = \begin{pmatrix} \mathbf{b}_i \\ \mathbf{b}_z \end{pmatrix}$$

$$\mathbf{b} = \begin{pmatrix} 2\\ \mathbf{b}_z \end{pmatrix}$$

$$\frac{|\Delta \mathbf{x}|}{|\mathbf{x}|} = \kappa \frac{|\Delta \mathbf{b}|}{|\mathbf{b}|}$$

$$\mathbf{b} = \begin{pmatrix} 2\\ -1/3 \end{pmatrix}$$

How big is **b**? Three common measures.

$$\frac{|\Delta \mathbf{x}|}{|\mathbf{x}|} = \kappa \frac{|\Delta \mathbf{b}|}{|\mathbf{b}|}$$

$$\mathbf{b} = \begin{pmatrix} 2\\ -1/3 \end{pmatrix}$$

How big is **b**? Three common measures.

One-norm:

$$||\mathbf{b}||_1 = |2| + \left|-\frac{1}{3}\right| = 2\frac{1}{3} = 2.\overline{3}$$

$$\frac{|\Delta \mathbf{x}|}{|\mathbf{x}|} = \kappa \frac{|\Delta \mathbf{b}|}{|\mathbf{b}|}$$

$$\mathbf{b} = \begin{pmatrix} 2\\ -1/3 \end{pmatrix}$$

How big is **b**? Three common measures.

One-norm:

$$|\mathbf{b}||_1 = |2| + \left|-\frac{1}{3}\right| = 2\frac{1}{3} = 2.\overline{3}$$

 $\infty$ -norm:

$$||\mathbf{b}||_{\infty} = \max\left(|2|, \left|-\frac{1}{3}\right|\right) = 2$$

$$\frac{|\Delta \mathbf{x}|}{|\mathbf{x}|} = \kappa \frac{|\Delta \mathbf{b}|}{|\mathbf{b}|}$$

$$\mathbf{b} = \begin{pmatrix} 2\\ -1/3 \end{pmatrix}$$

How big is **b**? Three common measures.

One-norm:

$$|\mathbf{b}||_1 = |2| + \left|-\frac{1}{3}\right| = 2\frac{1}{3} = 2.\overline{3}$$

 $\infty$ -norm:

$$||\mathbf{b}||_{\infty} = \max\left(|2|, \left|-\frac{1}{3}\right|\right) = 2$$

2-norm:

$$\|\mathbf{b}\|_2 = \sqrt{b_1^2 + b_2^2} = \left(4 + \frac{1}{9}\right)^{\frac{1}{2}} \approx 2.03$$

### Unit Ball for the $\infty$ -norm



### Unit Ball for the 2-norm



### Unit Ball for the 1-norm



### Vector Norms

The 1,2 and  $\infty$  norms are **vector norms**.

- 1.  $||\mathbf{x}|| \ge 0$  ( $||\mathbf{x}|| = 0$  iff  $\mathbf{x} = 0$ )
- 2.  $||c\mathbf{x}|| = |c|||\mathbf{x}||$  for all  $c \in \mathbb{R}$
- 3.  $||\mathbf{x} + \mathbf{y}|| \le ||\mathbf{x}|| + ||\mathbf{y}|$  (Triangle Inequality)

Picture of triangle inequality



 $|cx_{1}| + |cx_{2}|$ = |c| |x\_{1}| + |c| |x\_{2}| = |c| (||x||,)

1 × lz

## Absolute and Relative Errors

$$A\mathbf{x} = \mathbf{b}$$
$$A\mathbf{y} = \mathbf{b} + \Delta \mathbf{b}$$
$$\mathbf{y} = \mathbf{x} + \Delta \mathbf{x}$$



Absolute errors:

Relative errors:

 $||\Delta \mathbf{b}||; \qquad ||\Delta \mathbf{x}||$ 



## Absolute and Relative Errors

 $A\mathbf{x} = \mathbf{b}$  $A\mathbf{y} = \mathbf{b} + \Delta \mathbf{b}$  $\mathbf{y} = \mathbf{x} + \Delta \mathbf{x}$ 

$$A_{x} = b$$

$$A_{y} = b + Ab$$

$$A(x + Ax) = b + Ab$$

Relationship:

$$A\Delta \mathbf{x} = \Delta \mathbf{b}$$
$$\Delta \mathbf{x} = A^{-1}\Delta \mathbf{b}$$

## Absolute and Relative Errors

$$A\mathbf{x} = \mathbf{b}$$
$$A\mathbf{y} = \mathbf{b} + \Delta \mathbf{b}$$
$$\mathbf{y} = \mathbf{x} + \Delta \mathbf{x}$$

Relationship:

$$A\Delta \mathbf{x} = \Delta \mathbf{b}$$
$$\Delta \mathbf{x} = A^{-1}\Delta \mathbf{b}$$

$$||\Delta \mathbf{x}|| = ||A^{-1}\Delta \mathbf{b}||$$

## Motivating Condition Number

 $||\Delta \mathbf{x}|| = ||A^{-1}\Delta \mathbf{b}||$  $||\mathbf{b}|| = ||A\mathbf{x}||$ 

Suppose

 $||A^{-1}\mathbf{y}|| \le M||\mathbf{y}||$  $||A\mathbf{w}|| \le C||\mathbf{w}||$ 

no matter what  $\mathbf{y}$  and  $\mathbf{w}$  are.

## Motivating Condition Number

 $||\Delta \mathbf{x}|| = ||A^{-1}\Delta \mathbf{b}||$  $||\mathbf{b}|| = ||A\mathbf{x}||$ 

Suppose

 $||A^{-1}\mathbf{y}|| \le M||\mathbf{y}||$  $||A\mathbf{w}|| \le C||\mathbf{w}||$ 

no matter what  $\mathbf{y}$  and  $\mathbf{w}$  are.

$$||\Delta \mathbf{x}|| = ||A^{-1}\Delta \mathbf{b}|| \le M ||\Delta \mathbf{b}||$$

## **Motivating Condition Number**

 $||\Delta \mathbf{x}|| = ||A^{-1}\Delta \mathbf{b}||$  $||\mathbf{b}|| = ||A\mathbf{x}||$ 

Suppose

 $||A^{-1}\mathbf{y}|| \le M||\mathbf{y}||$  $||A\mathbf{w}|| \le C||\mathbf{w}||$ 

no matter what y and w are.

 $\begin{aligned} \|\Delta \mathbf{x}\| &= \|A^{-1}\Delta \mathbf{b}\| \le M \|\Delta \mathbf{b}\| \\ \|\Delta \mathbf{x}\| &\leq M \frac{\|\Delta \mathbf{b}\|}{\|\mathbf{x}\|} \stackrel{2}{\twoheadrightarrow} M \frac{\|\Delta \mathbf{b}\|}{\|\mathbf{b}\|} \frac{\|\mathbf{b}\|}{\|\mathbf{x}\|} = M \frac{\|\Delta \mathbf{b}\|}{\|\mathbf{b}\|} \frac{\|A\mathbf{x}\|}{\|\mathbf{x}\|} \le CM \frac{\|\Delta \mathbf{b}\|}{\|\mathbf{b}\|} \end{aligned}$