Condition Numbers and Stability

Math 426
University of Alaska Fairbanks

October 14, 2020

How big is the error?

In solving

$$
A \mathbf{x}=\mathbf{b}
$$

how big a mistake are we making?

How big is the error?

In solving

$$
A \mathbf{x}=\mathbf{b}
$$

how big a mistake are we making?
We can't represent bexactly (roundoff error)

How big is the error?

In solving

$$
A \mathbf{x}=\mathbf{b}
$$

how big a mistake are we making?
We can't represent \mathbf{b} exactly (roundoff error)
We can't represent A or \mathbf{x} exactly either!

How big is the error?

In solving

$$
A \mathbf{x}=\mathbf{b}
$$

how big a mistake are we making?
We can't represent bexactly (roundoff error)
We can't represent A or \mathbf{x} exactly either!
We discussed partial pivoting because we saw that roundoff error in A led to spectacular failures otherwise. But we have no proof that partial pivoting is a perfect remedy.

How big is the error?

In solving

$$
A \mathbf{x}=\mathbf{b}
$$

how big a mistake are we making?
We can't represent bexactly (roundoff error)
We can't represent A or \mathbf{x} exactly either!
We discussed partial pivoting because we saw that roundoff error in A led to spectacular failures otherwise. But we have no proof that partial pivoting is a perfect remedy. (Spoiler alert: there is no perfect remedy)

How big is the error?

$$
A \mathbf{x}=\mathbf{b}
$$

For now, we are going to focus on the case where A is known exactly, but there is error in \mathbf{b}.

How big is the error?

$$
A \mathbf{x}=\mathbf{b}
$$

For now, we are going to focus on the case where A is known exactly, but there is error in \mathbf{b}.

We actually solve

$$
A \mathbf{y}=\mathbf{b}+\Delta \mathbf{b}
$$

where $\Delta \mathbf{b}$ is the error in \mathbf{b}.

How big is the error?

$$
A \mathbf{x}=\mathbf{b}
$$

For now, we are going to focus on the case where A is known exactly, but there is error in \mathbf{b}.

We actually solve

$$
A \mathbf{y}=\mathbf{b}+\Delta \mathbf{b}
$$

where $\Delta \mathbf{b}$ is the error in \mathbf{b}.
We write

$$
\mathbf{y}=\mathbf{x}+\Delta \mathbf{x}
$$

where $\Delta \mathbf{x}$ is the error in \mathbf{x}.

How big is the error?

$$
A \mathbf{x}=\mathbf{b}
$$

For now, we are going to focus on the case where A is known exactly, but there is error in \mathbf{b}.

We actually solve

$$
A \mathbf{y}=\mathbf{b}+\Delta \mathbf{b}
$$

where $\Delta \mathbf{b}$ is the error in \mathbf{b}.
We write

$$
\mathbf{y}=\mathbf{x}+\Delta \mathbf{x}
$$

where $\Delta \mathbf{x}$ is the error in \mathbf{x}.
How big is the error $\Delta \mathbf{x}$ compared to the error $\Delta \mathbf{b}$?

Condition number, vaguely

$$
\begin{aligned}
A \mathbf{x} & =\mathbf{b} \\
A \mathbf{y} & =\mathbf{b}+\Delta \mathbf{b} \\
\mathbf{y} & =\mathbf{x}+\Delta \mathbf{x}
\end{aligned}
$$

How big is the error $\Delta \mathbf{x}$ compared to the error $\Delta \mathbf{b}$?

Condition number, vaguely

$$
\begin{aligned}
A \mathbf{x} & =\mathbf{b} \\
A \mathbf{y} & =\mathbf{b}+\Delta \mathbf{b} \\
\mathbf{y} & =\mathbf{x}+\Delta \mathbf{x}
\end{aligned}
$$

How big is the error $\Delta \mathbf{x}$ compared to the error $\Delta \mathbf{b}$?
If $\Delta \mathbf{x}$ and $\Delta \mathbf{b}$ were numbers.

$$
|\Delta \mathbf{x}|=C|\Delta \mathbf{b}| \quad C=\frac{|A x|}{\left|A b_{0}\right|}
$$

The value C would tell us how the error in \mathbf{b} magnified (or shrunk!) to become the error $\Delta \mathbf{x}$. The constant C plays a role that would be called the absolute condition number.

Condition number, vaguely

$$
\begin{aligned}
A \mathbf{x} & =\mathbf{b} \\
A \mathbf{y} & =\mathbf{b}+\Delta \mathbf{b} \\
\mathbf{y} & =\mathbf{x}+\Delta \mathbf{x}
\end{aligned}
$$

How big is the error $\Delta \mathbf{x}$ compared to the error $\Delta \mathbf{b}$?
If $\Delta \mathbf{x}$ and $\Delta \mathbf{b}$ were numbers

$$
|\Delta \mathbf{x}|=C|\Delta \mathbf{b}|
$$

The value C would tell us how the error in \mathbf{b} magnified (or shrunk!) to become the error $\Delta \mathbf{x}$. The constant C plays a role that would be called the absolute condition number.

An ongoing theme: relative errors are more relevant than absolute errors.

$$
\frac{|\Delta \mathbf{x}|}{|\mathbf{x}|}=\kappa \frac{|\Delta \mathbf{b}|}{|\mathbf{b}|}
$$

Key concept: relative condition number (to be defined).

How big is a vector?

$$
\frac{|\Delta \mathbf{x}|}{|\mathbf{x}|}=\kappa \frac{|\Delta \mathbf{b}|}{|\mathbf{b}|}
$$

How big is a vector?

$$
\begin{aligned}
& \frac{|\Delta \mathbf{x}|}{|\mathbf{x}|}=\kappa \frac{|\Delta \mathbf{b}|}{|\mathbf{b}|} \\
& \mathbf{b}=\binom{2}{-1 / 3}=\binom{b_{1}}{b_{2}} \sqrt{b_{1}^{2}+b_{2}^{2}}
\end{aligned}
$$

How big is a vector?

$$
\begin{gathered}
\frac{|\Delta \mathbf{x}|}{|\mathbf{x}|}=\kappa \frac{|\Delta \mathbf{b}|}{|\mathbf{b}|} \\
\mathbf{b}=\binom{2}{-1 / 3}
\end{gathered}
$$

How big is \mathbf{b} ? Three common measures.

How big is a vector?

$$
\begin{gathered}
\frac{|\Delta \mathbf{x}|}{|\mathbf{x}|}=\kappa \frac{|\Delta \mathbf{b}|}{|\mathbf{b}|} \\
\mathbf{b}=\binom{2}{-1 / 3}
\end{gathered}
$$

How big is \mathbf{b} ? Three common measures.
One-norm:

$$
\|\mathbf{b}\|_{1}=|2|+\left|-\frac{1}{3}\right|=2 \frac{1}{3}=2 . \overline{3}
$$

How big is a vector?

$$
\begin{gathered}
\frac{|\Delta \mathbf{x}|}{|\mathbf{x}|}=\kappa \frac{|\Delta \mathbf{b}|}{|\mathbf{b}|} \\
\mathbf{b}=\binom{2}{-1 / 3}
\end{gathered}
$$

How big is \mathbf{b} ? Three common measures.
One-norm:

$$
\|\mathbf{b}\|_{1}=|2|+\left|-\frac{1}{3}\right|=2 \frac{1}{3}=2 . \overline{3}
$$

∞-norm:

$$
\|\mathbf{b}\|_{\infty}=\max \left(|2|,\left|-\frac{1}{3}\right|\right)=2
$$

How big is a vector?

$$
\begin{aligned}
& \frac{|\Delta \mathbf{x}|}{|\mathbf{x}|}=\kappa \frac{|\Delta \mathbf{b}|}{|\mathbf{b}|} \\
& \mathbf{b}=\binom{2}{-1 / 3}
\end{aligned}
$$

How big is \mathbf{b} ? Three common measures.
One-norm:

$$
\|\mathbf{b}\|_{1}=|2|+\left|-\frac{1}{3}\right|=2 \frac{1}{3}=2 . \overline{3}
$$

∞-norm:

$$
\|\mathbf{b}\|_{\infty}=\max \left(|2|,\left|-\frac{1}{3}\right|\right)=2
$$

2-norm:

$$
\|\mathbf{b}\|_{2}=\sqrt{b_{1}^{2}+b_{2}^{2}}=\left(4+\frac{1}{9}\right)^{\frac{1}{2}} \approx 2.03
$$

Unit Ball for the ∞-norm

$$
\mathbf{x}=\left(x_{1}, x_{2}\right)^{T} \quad\|\mathbf{x}\|_{\infty}=\max \left(x_{1}\left|,\left|x_{2}\right|\right) \quad\|x\|_{\infty}=1\right.
$$

Unit ball: $\|\mathbf{x}\|_{\infty} \leq 1$

Unit Ball for the 2-norm

$$
\begin{array}{r}
\mathbf{x}=\left(x_{1}, x_{2}\right)^{T} \quad\|x\|_{2} \leqslant l^{l} / 2 \\
\|\mathbf{x}\|_{2}=\sqrt{x_{1}^{2}+x_{2}^{2}}
\end{array}
$$

Unit ball: $\|\mathbf{x}\|_{2} \leq 1$

Unit Ball for the 1-norm

Vector Norms

$$
\|x\|_{2}
$$

The 1,2 and ∞ norms are vector norms.

1. $\|\mathbf{x}\| \geq 0(\|\mathbf{x}\|=0$ iff $\mathbf{x}=0)$

$$
\left|c x_{1}\right|+\left|c x_{2}\right|
$$

2. $\|c \mathbf{x}\|=|c|\|\mathbf{x}\|$ for all $c \in \mathbb{R}$
3. $\|\mathbf{x}+\mathbf{y}\| \leq\|\mathbf{x}\|+\|\mathbf{y}\|$ (Triangle Inequality)

Picture of triangle inequality

$$
\begin{aligned}
& =|c|\left|x_{1}\right|+|c|\left|x_{2}\right| \\
& =|c|\left(\|x \mid\|_{1}\right)
\end{aligned}
$$

Absolute and Relative Errors

$$
\begin{aligned}
A \mathbf{x} & =\mathbf{b} \\
A \mathbf{y} & =\mathbf{b}+\Delta \mathbf{b} \\
\mathbf{y} & =\mathbf{x}+\Delta \mathbf{x}
\end{aligned}
$$

Absolute errors:

$$
\frac{\left|\Delta_{x}\right|}{|x|}
$$

$$
\|\Delta \mathbf{b}\| ; \quad\|\Delta \mathbf{x}\|
$$

Relative errors:

$$
\frac{\|\Delta \mathbf{b}\|}{\|\mathbf{b}\|} ; \quad \frac{\|\Delta \mathbf{x}\|}{\|\mathbf{x}\|}
$$

Absolute and Relative Errors

$$
\begin{array}{ll}
A \mathbf{x}=\mathbf{b} & A_{x}=b \\
A \mathbf{y}=\mathbf{b}+\Delta \mathbf{b} \\
\mathbf{y}=\mathbf{x}+\Delta \mathbf{x} & A_{y}=b+\Delta b \\
& A(x+\Delta x)=b+\Delta b
\end{array}
$$

Relationship:

$$
\begin{array}{rl}
A \Delta x=\Delta \mathrm{b} & A x+A \Delta_{x} \\
\Delta x=A^{-1} \Delta \mathrm{~b} & \\
& =b+\Delta b
\end{array}
$$

Absolute and Relative Errors

$$
\begin{aligned}
A \mathbf{x} & =\mathbf{b} \\
A \mathbf{y} & =\mathbf{b}+\Delta \mathbf{b} \\
\mathbf{y} & =\mathbf{x}+\Delta \mathbf{x}
\end{aligned}
$$

Relationship:

$$
\begin{aligned}
A \Delta \mathbf{x} & =\Delta \mathbf{b} \\
\Delta \mathbf{x} & =A^{-1} \Delta \mathbf{b}
\end{aligned}
$$

$$
\|\Delta \mathbf{x}\|=\left\|A^{-1} \Delta \mathbf{b}\right\|
$$

Motivating Condition Number

$$
\begin{aligned}
\|\Delta \mathbf{x}\| & =\left\|A^{-1} \Delta \mathbf{b}\right\| \\
\|\mathbf{b}\| & =\|A \mathbf{x}\|
\end{aligned}
$$

Suppose

$$
\begin{aligned}
\left\|A^{-1} \mathbf{y}\right\| & \leq M\|\mathbf{y}\| \\
\|A \mathbf{w}\| & \leq C\|\mathbf{w}\|
\end{aligned}
$$

no matter what \mathbf{y} and \mathbf{w} are.

Motivating Condition Number

$$
\begin{aligned}
\|\Delta \mathbf{x}\| & =\left\|A^{-1} \Delta \mathbf{b}\right\| \\
\|\mathbf{b}\| & =\|A \mathbf{x}\|
\end{aligned}
$$

Suppose

$$
\begin{aligned}
\left\|A^{-1} \mathbf{y}\right\| & \leq M\|\mathbf{y}\| \\
\|A \mathbf{w}\| & \leq C\|\mathbf{w}\|
\end{aligned}
$$

no matter what \mathbf{y} and \mathbf{w} are.

$$
\|\Delta \mathbf{x}\|=\left\|A^{-1} \Delta \mathbf{b}\right\| \leq M\|\Delta \mathbf{b}\|
$$

Motivating Condition Number

$$
\begin{aligned}
\|\Delta \mathbf{x}\| & =\left\|A^{-1} \Delta \mathbf{b}\right\| \\
\|\mathbf{b}\| & =\|A \mathbf{x}\|
\end{aligned}
$$

Suppose

$$
\begin{aligned}
\left\|A^{-1} \mathbf{y}\right\| & \leq M\|\mathbf{y}\| \\
\|A \mathbf{w}\| & \leq C\|\mathbf{w}\|
\end{aligned}
$$

no matter what \mathbf{y} and \mathbf{w} are.

$$
\begin{gathered}
\|\Delta \mathbf{x}\|=\left\|A^{-1} \Delta \mathbf{b}\right\| \leq M\|\Delta \mathbf{b}\| \\
\frac{\|\Delta \mathbf{x}\|}{\|\mathbf{x}\|} \leq M \frac{\|\Delta \mathbf{b}\|}{\|\mathbf{x}\|} \frac{2}{\|} M \frac{\|\Delta \mathbf{b}\|}{\|\mathbf{\|}\| \mathbf{b} \|} \frac{\|\mathrm{b}\|}{\|\mathbf{x}\|}=M \frac{\|\Delta \mathbf{b}\|}{\|\mathbf{b}\|} \frac{\|A \mathbf{x}\|}{\|\mathbf{x}\|} \leq C M \frac{\|\Delta \mathbf{b}\|}{\|\mathbf{b}\|}
\end{gathered}
$$

