Theorem

Suppose f has k continuous derivatives on $[a, b]$ and let p_{n} be the $n^{\text {th }}$ order Chebyshev interpolant. Then there is a $C>0$, not depending on n, such that

$$
\left|f(x)-p_{n}(x)\right| \leq C n^{-k}
$$

for all $x \in[a, b]$.

$$
\begin{aligned}
& n^{-1} \\
& n^{-2} \\
& n^{-3}
\end{aligned}
$$

