Chebyshev
 Pblyndinilal Interpolation

Math 426
University of Alaska Fairbanks

OAtaber 2k, 2020

Polynomial Interpolation Error

$$
f(x)=p(x)+f^{(n+1)}(\xi) \frac{\prod_{k=0}^{n}\left(x-x_{k}\right)}{(n+1)!}
$$

Keeping this small relies on keeping the product $\left(x-x_{1}\right) \cdot\left(x-x_{n}\right)$ small but also $f^{(n+1)}(\xi)$ small.

This can go wrong in ways that may surprise you.

Polynomial Interpolation Error

$$
f(x)=p(x)+f^{(n+1)}(\xi) \frac{\prod_{k=0}^{n}\left(x-x_{k}\right)}{(n+1)!}
$$

Keeping this small relies on keeping the product $\left(x-x_{1}\right) \cdot\left(x-x_{n}\right)$ small but also $f^{(n+1)}(\xi)$ small.

This can go wrong in ways that may surprise you.

$$
f(x)=\frac{1}{1+x^{2}}
$$

Matlab Demo

What went wrong?

Chebyshev Polynomials

You don't always get to pick your sample points.
But if you can, there is a great chọice.
On [-1,1]:

$$
\varliminf_{\hat{x}_{j}=\underset{\substack{\sin (\pi / 2 \\ \cos }}{j}+\mathcal{K}(\pi / n) ; \quad 0 \leq j \leq n}
$$

Chebyshev Polynomials

You don't always get to pick your sample points.
But if you can, there is a great choice.
On $[-1,1]$:

$$
\hat{x}_{j}=\sin (\pi / 2+k(\pi / n) ; \quad 0 \leq j \leq n
$$

Diagram:

On $[a, b], x_{j}=a+\left(\hat{x}_{j}+1\right) / 2(b-a)$

Matlab Demo!

