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Suppose you want to integrate on [—1,1] and | only let you have
one sample point. Where do you put it so that [_11p(x) dx is
computed exactly for polynomials of as high a degree as possible?
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Motivation

Suppose you want to integrate on [-1,1] and | only let you have
one sample point. Where do you put it so that f_llp(x) dx is
computed exactly for polynomials of as high a degree as possible?
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Motivation

Suppose you want to integrate on [-1,1] and | only let you have
one sample point. Where do you put it so that f_llp(x) dx is
computed exactly for polynomials of as high a degree as possible?
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Motivation

Suppose you want to integrate on [-1,1] and | only let you have
one sample point. Where do you put it so that f_llp(x) dx is
computed exactly for polynomials of as high a degree as possible?
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Need to determine Ay and xy.

f(x)=1: 2=A AOJZ
f(x):x: 0 =Apxg J(O-:O

So put it in the mid

Ay =2.

joint: xo = 0 ang



Two sample points, wah-ah-ah!

Suppose you want to integrate on [-1,1] and | only let you have
two sample points. Where do you put them so that f_llp(x) dx is
computed exactly for polynomials of as high a degree as possible?
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Two sample points, wah-ah-ah!

Suppose you want to integrate on [-1,1] and | only let you have
two sample points. Where do you put them so that f_llp(x) dx is
computed exactly for polynomials of as high a degree as possible?

[ 70 = Aaf () + Arf ()

Need to determine four unknowns: Ag, A; and xg, x;.



Two sample points, wah-ah-ah!

Suppose you want to integrate on [-1,1] and | only let you have
two sample points. Where do you put them so that f_llp(x) dx is
computed exactly for polynomials of as high a degree as possible?

[ 70 = Aaf () + Arf ()

Need to determine four unknowns: Ag, A; and xg, x;.
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Two sample points, wah-ah-ah!

Suppose you want to integrate on [-1,1] and | only let you have
two sample points. Where do you put them so that f_llp(x) dx is
computed exactly for polynomials of as high a degree as possible?

[ 70 = Aaf () + Arf ()

Need to determine four unknowns: Ag, A; and xg, x;.

f(x)=1: 2=A¢+A
f(x)=x: 0=Agxg+ A1x

2
f(x) =x*: 3" Aoxg + Arxi

f(x)=x: 0=Ax]+Ax;

This is a mess of nonlinear polynomial equations. Have fun.



Dot product on polynomials:

(p.a)= [ p()ax) dx.
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Dot product on polynomials: \V ‘PI (L) PL(’L\ J( =0
_(

1
(pa) = [ p(x)q(x) dx. N
-1
pO/Pe;urQCOMr(‘/‘,
Suppos a polynomial of degree__ignd is perpendicular, in

this sense,to all polynomials of degree 0, 1 and 2.
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Alternative Strategy

Dot product on polynomials:
1
(pa) = [ p(x)q(x) dx.

Suppose g(x) is a polynomial of degree 3 and is perpendicular, in
this sense, to all polynomials of degree 0, 1 and 2.

If p(x) is a polynomial of degree 5 we can write Z[X) WDCS—

p(x) = a(x)q(x) +b(x)

where a(x) and b(x) are polynomials of degree 2. 3 (/.
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Alternative Strategy

Dot product on polynomials:
1
(pa) = [ p(x)q(x) dx.

Suppose g(x) is a polynomial of degree 3 and is perpendicular, in
this sense, to all polynomials of degree 0, 1 and 2.

If p(x) is a polynomial of degree 5 we can write

p(x) = a(x)q(x) +b(x)

where a(x) and b(x) are polynomials of degree 2.

Llp(x) dx = [lla(x)q(x) dx + /:llb(x) dx = _/_jb(x) dx



Alternative Strategy

Suppos q(x) IS a polynomlal of degree 3 and is perpendicular, in
this sense, and 2.
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If p(x) is a polynomial of degree 5 we can Write\;? S Mo

p(x) = a(x)q(x) +b(x)

where a(x) and b(x) are polynomials of degree 2.

1 (x) dx = b(x) dx.
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Alternative Strategy

Suppose g(x) is a polynomial of degree 3 and is perpendicular, in
this sense, to all polynomials of degree 0, 1 and 2.

If p(x) is a polynomial of degree 5 we can write

p(x) = a(x)q(x) +b(x)

where a(x) and b(x) are polynomials of degree 2.

[llp(x) dx = [llb(x) dx.

Choose three sample points: xg, x; and x;, the roots of g(x).
Then choose weights Aj so that quadratics are integrated exactly.



Alternative Strategy

Suppose g(x) is a polynomial of degree 3 and is perpendicular, in
this sense, to all polynomials of degree 0, 1 and 2.

If p(x) is a polynomial of degree 5 we can write

p(x) = a(x)q(x) +b(x)

where a(x) and b(x) are polynomials of degree 2.

[llp(x) dx = [llb(x) dx.

Choose three sample points: xg, x; and x;, the roots of g(x).
Then choose weights Aj so that quadratics are integrated exactly.

2 =0
Qlp] = kZ Ar(a(xk)q(fx) + b(xx))

:éoAkb(xk):le(x) dx:f_llp(x) dx



Suppose g(x) is a polynomial of degree n +1 that is perpendicular
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to 1, x X (w:/L)
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Suppose g(x) is a polynomial of degree n +1 that is perpendicular
tolx,...,x". n= 2.

Let xo,...x, be the roots of q. Let Ag,...,A, be weights so that
Q is exact for polynomials of degree n.
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Gaussian Quadrature

Suppose g(x) is a polynomial of degree n + 1 that is perpendicular

tol,x,...,x".

Let xo,...x, be the roots of q. Let Ag,...,A, be weights so that
Q is exact for polynomials of degree n.

If p(x) is a polynomial of degree 2n +1, h=_¢,

p(x) =&q(x) +b(x)

with a(x), b(x) polynomials ﬁf degree n.
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Gaussian Quadrature

Suppose g(x) is a polynomial of degree n +1 that is perpendicular

tol,x,...,x".

Let xo,...x, be the roots of q. Let Ag,...,A, be weights so that
Q is exact for polynomials of degree n.

If p(x) is a polynomial of degree 2n +1,
p(x) = a(x)q(x) + b(x)

with a(x), b(x) polynomials of degree n.

f_llp(x) dx = /_11 b(x) dx



Gaussian Quadrature

Suppose g(x) is a polynomial of degree n + 1 that is perpendicular

tolx,...,x". Ael = deseen
Let xo,...x, be the roots of q. Let Ag,...,A, be weights so that
Q is exact for polynomials of degree n. - 09@5’{24\
If p(x) is a polynomial of degree 2n +1, - Jagsev
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Qlp] :kﬁ:Ak(a(xk)Q(xk)"'b(xk)) lL

. kz Ab(w) = [ b(x) dx= [ p(x) dx.
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Gaussain Quadrature

How do we find a quadratic polynomial that is perpendicular to 1

and x?

Gramm-Schmidt! 1, )&
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Gaussain Quadrature

How do we find a quadratic polynomial that is perpendicular to 1
and x?

“~ ‘
Gramm-Schmidt! Ta ‘
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qo(x) =1 7.= 5

How to compute a linear g; that is perpendicular to go?

/:3 go(x)(x —agl) =0

So (010 = 0.

L . . ~ ~/
How to compute @ quadratic g, that is perpendicular to g; and g¢?
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1 1
f Go(x)x* dx = ag f (Go)* dx
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Now pick weights Ay and A; so that integration of linear functions
Is exact.
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Roots and Weights
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Now pick weights Ay and A; so that integration of linear functions

IS exact.
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