Quadrature Review

Math 426
University of Alaska Fairbanks

November 13, 2020

Formulas from Polynomial Interpolation

Start with $f(x)$ on $[a, b]$.

$$
\int_{a}^{b} f(x) d x
$$

Formulas from Polynomial Interpolation

Start with $f(x)$ on $[a, b]$.
Let $p(x)$ be the $n^{\text {th }}$ order interpolating polynomial at points x_{0}, \ldots, x_{n} in $[a, b]$.

Formulas from Polynomial Interpolation

Start with $f(x)$ on $[a, b]$.
Let $p(x)$ be the $n^{\text {th }}$ order interpolating polynomial at points x_{0}, \ldots, x_{n} in $[a, b]$.

$$
\int_{a}^{b} f(x) d x
$$

$$
Q[f]=\int_{a}^{b} p(x) \quad f(x) \approx p(x)
$$

Formulas from Polynomial Interpolation

Start with $f(x)$ on $[a, b]$.
Let $p(x)$ be the $n^{\text {th }}$ order interpolating polynomial at points
x_{0}, \ldots, x_{n} in $[a, b]$.

$$
Q[f]=\int_{a}^{b} p(x)
$$

When the sample points are equally spaced and include a and b, these are called Newton-Coates formulas.

$$
\begin{aligned}
& n=1: \text { Trapezoid Rule } \\
& n=2: \text { Simpsons Rule }
\end{aligned}
$$

Formulas from Polynomial Interpolation

Start with $f(x)$ on $[a, b]$.
Let $p(x)$ be the $n^{\text {th }}$ order interpolating polynomial at points x_{0}, \ldots, x_{n} in $[a, b]$.

$$
Q[f]=\int_{a}^{b} p(x)
$$

When the sample points are equally spaced and include a and b, these are called Newton-Coates formulas.

Newton-Coates error:

$$
\xi \in[a, b]
$$

$$
\int_{a}^{b} f(x) d x-Q[f]= \begin{cases}K f^{(n+1)}(\xi) & n \text { odd } \\ K f^{(n+2)}(\xi) & n \text { even }\end{cases}
$$

Formulas from Polynomial Interpolation

Start with $f(x)$ on $[a, b]$.
Let $p(x)$ be the $n^{\text {th }}$ order interpolating polynomial at points
x_{0}, \ldots, x_{n} in $[a, b]$.

$$
Q[f]=\int_{a}^{b} p(x)
$$

When the sample points are equally spaced and include a and b, these are called Newton-Coates formulas.

Newton-Coates error:

$$
-\frac{1}{12} h^{3} f^{\prime \prime}(\xi)
$$

$$
\int_{a}^{b} f(x) d x-Q[f]= \begin{cases}K f^{(n+1)}(\xi) & n \text { odd } \\ K f^{(n+2)}(\xi) & n \text { even }\end{cases}
$$

Trapezoid Rule $n=1, K=-\frac{1}{12} h^{3}$.

Formulas from Polynomial Interpolation

Start with $f(x)$ on $[a, b]$.
Let $p(x)$ be the $n^{\text {th }}$ order interpolating polynomial at points x_{0}, \ldots, x_{n} in $[a, b]$.

$$
Q[f]=\int_{a}^{b} p(x)-\frac{1}{12} h^{3} f^{\prime \prime}(\xi)
$$

When the sample points are equally spaced and include a and b, these are called Newton-Coates formulas.

Newton-Coates error:

$$
\int_{a}^{b} f(x) d x-Q[f]= \begin{cases}K f^{(n+1)}(\xi) & n \text { odd } \\ K f^{(n+2)}(\xi) & n \text { even }\end{cases}
$$

Trapezoid Rule: $n=1, K=-\frac{1}{12} h^{2}$.
Simpson's Rule: $n=2, K=-\frac{1}{90}(h / 2)^{5}$

Determining Quadrature Formulas

If x_{0}, \ldots, x_{n} are the sample points,

$$
Q[f]=A_{0} f\left(x_{0}\right)+\cdots+A_{n} f\left(x_{n}\right)
$$

where

$$
A_{k}=\int_{a}^{b} \phi_{k}(x) d x . \text { Laqnge interpolally }
$$

Determining Quadrature Formulas

If x_{0}, \ldots, x_{n} are the sample points,

$$
Q[f]=A_{0} f\left(x_{0}\right)+\cdots+A_{n} f\left(x_{n}\right)
$$

where

$$
\begin{aligned}
& Q[f]=\int_{a}^{b} f(x) d x \\
& f \text { is poly ot }
\end{aligned}
$$

We can determine the A_{k} 's by using the observation that dequeue $\leq n$ $p(x)=f(x)$ whenever f is a polynomial of degree n or less.

Determining Quadrature Formulas

If x_{0}, \ldots, x_{n} are the sample points,

$$
Q[f]=A_{0} f\left(x_{0}\right)+\cdots+A_{n} f\left(x_{n}\right)
$$

where

$$
A_{k}=\int_{a}^{b} \phi_{k}(x) d x
$$

We can determine the A_{k} 's by using the observation that $p(x)=f(x)$ whenever f is a polynomial of degree n or less.

$$
\int_{a}^{b} q(x) d x=Q[q]=A_{0} q\left(x_{0}\right)+\cdots+A_{n} q\left(x_{n}\right) \begin{array}{ll}
\text { nH I } & \text { nt's } \\
\text { equation ts }
\end{array}
$$

Determining Quadrature Formulas

If x_{0}, \ldots, x_{n} are the sample points,
where

$$
Q[f]=A_{0} f\left(x_{0}\right)+\cdots+A_{n} f\left(x_{n}\right)
$$

$$
A_{k}=\int_{a}^{b} \phi_{k}(x) d x
$$

We can determine the A_{k} 's by using the observation that $p(x)=f(x)$ whenever f is a polynomial of degree n or less.

$$
\int_{a}^{b} q(x) d x=Q[q]=A_{0} q\left(x_{0}\right)+\cdots+A_{n} q\left(x_{n}\right)
$$

Pick $n+1$ linearly independent polynomials q_{k} of degree n or less to determine $n+1$ equations to solve for the A_{k} 's.

$$
\begin{aligned}
& \phi_{0}(x) f\left(x_{0}\right)+\cdots+ \phi_{n}(x) f\left(x_{1}\right) \\
& p(x) \quad \rho\left(x_{c}\right)=f\left(x_{k}\right) \forall x_{k} \\
& \int_{a}^{b} p(x) d x= f\left(x_{0}\right) \\
& \int_{a}^{b} \phi_{0}(x) d k \\
&+\cdots+f\left(x_{1}\right) \int_{a}^{b} \phi_{n}(x) d k \\
&= A_{0} f\left(x_{0}\right)+\cdots+A_{n} f\left(x_{n}\right)
\end{aligned}
$$

cubic quentie into,poluties

$$
\begin{aligned}
\int_{a}^{b} f(x) d x=\int_{a}^{b} p(x) d x & =Q[f] \\
& =A_{0} f\left(x_{0}\right)+\cdots+A_{1} f\left(x_{n}\right)
\end{aligned}
$$

