Numerical Integration (Quadrature)

Math 426

University of Alaska Fairbanks
November 2020
11

Motivation

In calculus class we tricked you. We made you belive that you had the power to compute definite integrals. But your powers are fragile. It's easy to write down integrals where you can't find an antiderivative and therefore can't write down the exact value.
E.g.

$$
\int_{0}^{1} \sin (\sqrt{x}) d x
$$

Motivation

In calculus class we tricked you. We made you belive that you had the power to compute definite integrals. But your powers are fragile. It's easy to write down integrals where you can't find an antiderivative and therefore can't write down the exact value.
E.g.

$$
\int_{0}^{1} \sin (\sqrt{x}) d x
$$

You need to find $F(x)$ with

$$
\int_{a}^{x} \sin (\sqrt{5}) d s
$$

$$
F^{\prime}(x)=\sin (\sqrt{x})
$$

in which case

$$
\int_{0}^{1} \sin (\sqrt{x}) d x=F(1)-F(0 .)
$$

Motivation

In calculus class we tricked you. We made you belive that you had the power to compute definite integrals. But your powers are fragile. It's easy to write down integrals where you can't find an antiderivative and therefore can't write down the exact value.
E.g.

$$
\int_{0}^{1} \sin (\sqrt{x}) d x
$$

You need to find $F(x)$ with

$$
F^{\prime}(x)=\sin (\sqrt{x})
$$

in which case

$$
\int_{0}^{1} \sin (\sqrt{x}) d x=F(1)-F(0 .)
$$

Good luck!

Strategy

We want to compute

$$
\int_{a}^{b} f(x) d x
$$

Strategy

We want to compute

$$
\int_{a}^{b} f(x) d x
$$

We find an approximating function $g(x)$ instead where we can compute definite integrals and compute

$$
\int_{a}^{b} g(x) d x
$$

Strategy

We want to compute

$$
\int_{a}^{b} f(x) d x
$$

We find an approximating function $g(x)$ instead where we can compute definite integrals and compute

$$
\int_{a}^{b} g(x) d x
$$

An important part of this process will be to estimate the error

$$
\begin{aligned}
E=\left|\int_{a}^{b} f(x) d x-\int_{a}^{b} g(x) d x\right| & =\left|\int_{a}^{b}(f(x)-g(x)) d x\right| \\
b-a & =h
\end{aligned}
$$

Via Linear Interpolation (AKA Trapezoid Rule)

Let $g(x)$ be the linear interpolant

$$
g(x)=f(a)(1-\theta)+f(b) \theta
$$

with

$$
\theta=\frac{x-a}{b-a}=\frac{x-a}{h}
$$

$\theta(x)$

Via Linear Interpolation (AKA Trapezoid Rule)

Let $g(x)$ be the linear interpolant

$$
g(x)=f(a)(1-\theta)+f(b) \theta
$$

Via Linear Interpolation (AKA Trapezoid Rule)

Let $g(x)$ be the linear interpolant

$$
\begin{gathered}
g(x)=f(a)(1-\theta)+f(b) \theta \quad \frac{a+b}{2} \\
\theta=\frac{x-a}{b-a}=\frac{x-a}{h} \\
\int_{a}^{b} \theta d x=h \int_{0}^{1} \theta d \theta=\left.h \frac{\theta^{2}}{2}\right|_{0} ^{1}=\frac{h}{2} . \\
\int_{a}^{b}(1-\theta) d x=h \int_{0}^{1}(1-\theta) d \theta=-\left.h \frac{(1-\theta)^{2}}{2}\right|_{0} ^{1}=\frac{h}{2} . \\
\int_{a}^{b} g(x) d x=h \frac{f(a)+f(b)}{2}
\end{gathered}
$$

with

Error for Trapezoidal Rule

$$
f(x)=g(x)+\frac{f^{\prime \prime}(\xi)}{2}(x-a)(x-b)
$$

Error for Trapezoidal Rule

$$
\begin{aligned}
& f(x)=g(x)+\frac{f^{\prime \prime}(\xi)}{2}(x-a)(x-b) \\
& \int_{a}^{b}(f(x)-g(x)) d x=\int_{a}^{b} f^{\prime \prime}(\xi(x))(x-a)(x-b) d x \\
&= f^{\prime \prime}(c) \int_{a}^{b}(x-a)(x-b) d x
\end{aligned} \quad \text { Mean Value integreds }
$$

Error for Trapezoidal Rule

$$
\begin{gathered}
f(x)=g(x)+\frac{f^{\prime \prime}(\xi)}{2}(x-a)(x-b) \\
\int_{a}^{b}(f(x)-g(x)) d x=\int_{a}^{b} f^{\prime \prime}(\xi(x))(x-a)(x-b) d x \\
=f^{\prime \prime}(c) \int_{a}^{b}(x-a)(x-b) d x \\
\int_{a}^{b} \underbrace{(x-a)}(x-b) d x=h^{2} \int_{a}^{b}(1-\theta) \theta d x=h^{3} \int_{0}^{1}(1-\theta) \theta d \theta \\
\frac{x-a}{b-a}=\theta
\end{gathered}
$$

Error for Trapezoidal Rule

$$
\begin{gathered}
f(x)=g(x)+\frac{f^{\prime \prime}(\xi)}{2}(x-a)(x-b) \\
\begin{aligned}
\int_{a}^{b}(f(x)-g(x)) d x & =\int_{a}^{b} f^{\prime \prime}(\xi(x))(x-a)(x-b) d x \\
& =f^{\prime \prime}(c) \int_{a}^{b}(x-a)(x-b) d x
\end{aligned} \\
\begin{aligned}
& \int_{a}^{b}(x-a)(x-b) d x=h^{2} \int_{a}^{b}(1-\theta) \theta d x=h^{3} \int_{0}^{1}(1-\theta) \theta d \theta \\
&=\left.h^{3}\left(\frac{\theta^{2}}{2}-\frac{\theta^{3}}{3}\right)\right|_{0} ^{1}=\frac{h^{3}}{6} \\
& E=\left|f^{\prime \prime}(c)\right| \frac{h^{3}}{6} \text { 亿2 ? }
\end{aligned}
\end{gathered}
$$

Newton-Coates Rule

Strategy: We subdivide $[a, b]$ into n equally sized intervals and interpolate with a polynomial of degree n. The case $n=1$ is the trapezoid rule. The case $n=2$ is known as Simpson's rule.

Newton-Coates Rule
Strategy: We subdivide [a, b] into n equally sized intervals and interpolate with a polynomial of degree n. The case $n=1$ is the trapezoid rule. The case $n=2$ is known as Simpson's rule.

Sample points: $a=x_{0}, x_{1}, \ldots, x_{n}=b$.

$$
\begin{array}{lllll}
a & x_{1} & x_{2} & x_{3} & k_{4} \\
x_{0} & b=x_{5}
\end{array}
$$

Newton-Coates Rule

Strategy: We subdivide $[a, b]$ into n equally sized intervals and interpolate with a polynomial of degree n. The case $n=1$ is the trapezoid rule. The case $n=2$ is known as Simpson's rule.

Sample points: $a=x_{0}, x_{1}, \ldots, x_{n}=b$.
Let p_{k} be the Lagrange basis polynomial, so $p_{k}\left(x_{j}\right)=\delta_{k, j}$.

Newton-Coates Rule

Strategy: We subdivide $[a, b]$ into n equally sized intervals and interpolate with a polynomial of degree n. The case $n=1$ is the trapezoid rule. The case $n=2$ is known as Simpson's rule.

Sample points: $a=x_{0}, x_{1}, \ldots, x_{n}=b$.
Let p_{k} be the Lagrange basis polynomial, so $p_{k}\left(x_{j}\right)=\delta_{k, j}$. Let

$$
A_{k}=\int_{a}^{b} p_{k}(x) d x
$$

Newton-Coates Rule

Strategy: We subdivide $[a, b]$ into n equally sized intervals and interpolate with a polynomial of degree n. The case $n=1$ is the trapezoid rule. The case $n=2$ is known as Simpson's rule.

Sample points: $a=x_{0}, x_{1}, \ldots, x_{n}=b$.
Let p_{k} be the Lagrange basis polynomial, so $p_{k}\left(x_{j}\right)=\delta_{k, j}$. Let

$$
A_{k}=\int_{a}^{b} p_{k}(x) d x
$$

Interpolant:

$$
\begin{array}{r}
g(x)=f\left(x_{0}\right) p_{0}(x)+\cdots+f\left(x_{n}\right) p_{n}(x)=\sum_{k=0}^{n} f\left(x_{k}\right) p_{k}(x) \\
\int g(x) d x=\int \sum_{k=0}^{n} f\left(x_{k}\right) p_{k}(x) d x
\end{array}
$$

$$
\begin{aligned}
& \int_{a}^{b} g(x) d x=\int_{a}^{b} \sum_{k=0}^{n} f\left(x_{k}\right) p_{k}(x) d x \\
&=\sum_{k=0}^{n} f\left(x_{k}\right) \int_{a}^{b} p_{k}(x) d x \\
& A_{k} \\
&=\sum_{k=0}^{n} A_{k} f\left(x_{k}\right) \\
&=A_{0} f\left(x_{0}\right)+A_{1} f\left(x_{1}\right)+\cdots+A_{n} f\left(x_{1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =A_{0} f\left(x_{0}\right)+A_{1} f\left(x_{1}\right)+\cdots+A_{n} f\left(x_{1}\right) \\
& h\left(\frac{f(a)+f(b)}{2}\right) \quad \begin{array}{l}
\prod_{j \neq k} \frac{\left(x-x_{j}\right)}{\left(x_{k}-x_{j}\right)}=p_{k}(x) \\
\frac{h}{2} f(0)+\frac{h}{2} f(b)
\end{array} \int_{a}^{b} p_{k}(x) d k=\int_{a}^{b} d_{k}
\end{aligned}
$$

Newton-Coates Rule

Strategy: We subdivide $[a, b]$ into n equally sized intervals and interpolate with a polynomial of degree n. The case $n=1$ is the trapezoid rule. The case $n=2$ is known as Simpson's rule.

Sample points: $a=x_{0}, x_{1}, \ldots, x_{n}=b$.
Let p_{k} be the Lagrange basis polynomial, so $p_{k}\left(x_{j}\right)=\delta_{k, j}$. Let

$$
A_{k}=\int_{a}^{b} p_{k}(x) d x
$$

Interpolant:

$$
\begin{aligned}
& g(x)=f\left(x_{0}\right) p_{0}(x)+\cdots+f\left(x_{n}\right) p_{n}(x)=\sum_{k=0}^{n} f\left(x_{k}\right) p_{k}(x) \\
& \int_{a}^{b} g(x) d x=\int_{a}^{b} \sum_{k=0}^{n} f\left(x_{k}\right) p_{k}(x) d x \\
&=\sum_{k=0}^{n} f\left(x_{k}\right) \int_{a}^{b} p_{k}(x) d x=\sum_{k=0}^{n} f\left(x_{k}\right) A_{k}
\end{aligned}
$$

Newton Coates II

If you know

$$
A_{k}=\int_{a}^{b} p_{k}(x) d x
$$

then

$$
\int_{a}^{b} g(x) d x=\sum_{k=0}^{n} f\left(x_{k}\right) A_{k}:=Q[f]
$$

and

$$
\int_{a}^{b} f(x) d x \approx Q[f] .
$$

Newton Coates II

If you know

$$
A_{k}=\int_{a}^{b} p_{k}(x) d x
$$

then

$$
\int_{a}^{b} g(x) d x=\sum_{k=0}^{n} f\left(x_{k}\right) A_{k}:=Q[f]
$$

and

$$
\int_{a}^{b} f(x) d x \approx Q[f] .
$$

How to compute the A_{k} 's without undue pain?

Newton Coates III

How to compute the A_{k} 's without undue pain?

Newton Coates III

How to compute the A_{k} 's without undue pain?
 degree n is exact. So if q is any polynomial of degree n or less

$$
\begin{gathered}
\int_{a}^{b} q(x) d x=Q[q]=\sum_{k=0}^{n} q\left(x_{k}\right) A_{k} . \\
\int_{a}^{b} q(x) d k=\int_{a}^{b} g(k) d k=\sum_{k=0}^{n} A_{k} q\left(x_{k}\right)
\end{gathered}
$$

Newton Coates III

How to compute the A_{k} 's without undue pain?
Key observation: the $n^{t} h$ order interpolant of a polynomial of degree n is exact. So if q is any polynomial of degree n or less

$$
\int_{a}^{b} q(x) d x=Q[q]=\sum_{k=0}^{n} q\left(x_{k}\right) A_{k}
$$

Pick your favorite $n+1$ polynomials q_{j} to obtain $n \neq 1$

$$
\sum_{k=0}^{n} q_{j}\left(x_{k}\right) A_{k}=\int_{a}^{b} q_{j}(x) d x
$$

Now solve for the A_{k} 's.

Simpson's Rule

$$
\begin{aligned}
& \text { We'll use } q_{j}(x)=\theta_{(x)^{i} \cdot j}^{j}=0,1_{1,2} \quad \theta^{0}, \theta^{\prime}, \quad \theta^{2} \\
& \int_{a}^{b} \theta^{j} d x=h \int_{0}^{1} \theta^{j} d \theta=h \frac{1}{(j+1)} \quad q_{0}^{(x)}=\theta^{\circ}(x) \\
& A_{0} q_{0}\left(x_{0}\right)+A_{1} q_{0}\left(x_{1}\right)+A_{2} q_{0}\left(x_{2}\right)=h \quad=1 \\
& A_{0} q_{1}\left(x_{0}\right)+A_{1} q_{1}\left(x_{1}\right)+A_{2} q_{1}\left(x_{2}\right)=\frac{h}{2} \\
& A_{0} q_{2}\left(x_{0}\right)+A_{2} q_{1}\left(x_{1}\right)+A_{2} q_{2}\left(x_{2}\right)=\frac{h}{3} \\
& A_{0} q_{0}\left(x_{0}\right)+A_{1} q_{0}\left(x_{1}\right)+A_{2} q_{0}\left(x_{3}\right)=\int_{a}^{b} q_{0}(x) d x \\
& A_{0}+A_{1}+A_{2}=h
\end{aligned}
$$

Simpson's Rule

We'll use $q_{j}(x)=\theta(x)^{j}, j=0,1,2$.

$$
\begin{gathered}
\int_{a}^{b} \theta^{j} d x=h \int_{0}^{1} \theta^{j} d \theta=h \frac{1}{(j+1)} \\
A_{0} q_{0}\left(x_{0}\right)+A_{1} q_{0}\left(x_{1}\right)+A_{2} q_{0}\left(x_{2}\right)=h \\
A_{0} q_{1}\left(x_{0}\right)+A_{1} q_{1}\left(x_{1}\right)+A_{2} q_{1}\left(x_{2}\right)=\frac{h}{2} \\
A_{0} q_{2}\left(x_{0}\right)+A_{2} q_{1}\left(x_{1}\right)+A_{2} q_{2}\left(x_{2}\right)=\frac{h}{3} \\
\theta\left(x_{0}\right)=0 ; \quad \theta\left(x_{1}\right)=\frac{1}{2} ; \quad \theta\left(x_{2}\right)=1
\end{gathered}
$$

Simpson's Rule

We'll use $q_{j}(x)=\theta(x)^{j}, j=0,1,2$.

$$
\begin{aligned}
& \int_{a}^{b} \theta^{j} d x=h \int_{0}^{1} \theta^{j} d \theta=h \frac{1}{(j+1)} \\
& A_{0} q_{0}\left(x_{0}\right)+A_{1} q_{0}\left(x_{1}\right)+A_{2} q_{0}\left(x_{2}\right)=h=\int_{0}^{b} \theta^{0} d x \\
& A_{0} q_{1}\left(x_{0}\right)+A_{1} q_{1}\left(x_{1}\right)+A_{2} q_{1}\left(x_{2}\right)=\frac{h}{2} \\
& A_{0} q_{2}\left(x_{0}\right)+A_{2} q_{1}\left(x_{1}\right)+A_{2} q_{2}\left(x_{2}\right)=\frac{h}{3} \longrightarrow \int_{a}^{y} \theta^{1} d x \\
& \theta\left(x_{0}\right)=0 ; \\
& \theta\left(x_{1}\right)=\frac{1}{2} ; \quad \theta\left(x_{2}\right)=1
\end{aligned}>\int_{a}^{b} \theta^{2} d x .
$$

Simpson's Rule

We'll use $q_{j}(x)=\theta(x)^{j}, j=0,1,2$.

$$
\begin{aligned}
& \int_{a}^{b} \theta^{j} d x=h \int_{0}^{1} \theta^{j} d \theta=h \frac{1}{(j+1)} \\
& A_{0} q_{0}\left(x_{0}\right)+A_{1} q_{0}\left(x_{1}\right)+A_{2} q_{0}\left(x_{2}\right)=h \\
& A_{0} q_{1}\left(x_{0}\right)+A_{1} q_{1}\left(x_{1}\right)+A_{2} q_{1}\left(x_{2}\right)=\frac{h}{2} \\
& A_{0} q_{2}\left(x_{0}\right)+A_{2} q_{1}\left(x_{1}\right)+A_{2} q_{2}\left(x_{2}\right)=\frac{h}{3} \\
& \theta\left(x_{0}\right)=0 ; \quad \theta\left(x_{1}\right)=\frac{1}{2} ; \quad \theta\left(x_{2}\right)=1 \\
& \quad\left(\begin{array}{ccc}
1 & 1 & 1 \\
0 & 1 / 2 & 1 \\
0 & 1 / 4 & 1
\end{array}\right)\left(\begin{array}{l}
A_{0} \\
A_{1} \\
A_{2}
\end{array}\right)=\left(\begin{array}{c}
h \\
h / 2 \\
h / 3
\end{array}\right) \quad A_{0}=\frac{h}{6} \quad A_{1}=\frac{2 h}{3} \\
& A_{0}=\frac{h}{6} ; \quad A_{1}=\frac{2 h}{3} ; \quad A_{2}=\frac{h}{6}
\end{aligned}
$$

$$
\begin{aligned}
A_{0} & =\frac{h}{6} \quad A_{1}=\frac{2 h}{3} \quad A_{2}=\frac{h}{6} \\
& \int_{0}^{\pi / 2} \sin (x) d x \\
D & =-\cos (x))_{0}^{\pi / 2} \\
& =-\cos (\pi / 2)+\cos (0) \\
& =1
\end{aligned}
$$

