Richardson Extrapolation

Math 426
University of Alaska Fairbanks

December 2, 2020

Motivation

Recall the first order approximation for the derivative:

$$
\frac{f(x+h)-f(x)}{h}=f^{\prime}(x)+\frac{1}{2!} f^{\prime \prime}(x) h+\frac{1}{3!} f^{\prime \prime \prime}(x) h^{2}+O\left(h^{3}\right) .
$$

Motivation

Recall the first order approximation for the derivative:

$$
\frac{f(x+h)-f(x)}{h}=f^{\prime}(x)+\frac{1}{2!} f^{\prime \prime}(x) h+\frac{1}{3!} f^{\prime \prime \prime}(x) h^{2}+O\left(h^{3}\right) .
$$

There is a way to convert a first order approximation into a second order approximation by doing a little more labor.

A bit of abstraction

Rewrite

$$
\frac{f(x+h)-f(x)}{h}=f^{\prime}(x)+\frac{1}{2!} f^{\prime \prime}(x) h+\frac{1}{3!} f^{\prime \prime \prime}(x) h^{2}+O\left(h^{3}\right) .
$$

as

$$
\begin{aligned}
F(h)= & f^{\prime}(x)+A_{1} h+A_{2} h^{2}+O\left(h^{3}\right) \\
& A_{*}
\end{aligned}
$$

A bit of abstraction

Rewrite

$$
\frac{f(x+h)-f(x)}{h}=f^{\prime}(x)+\frac{1}{2!} f^{\prime \prime}(x) h+\frac{1}{3!} f^{\prime \prime \prime}(x) h^{2}+O\left(h^{3}\right) .
$$

as

$$
F(h)=f^{\prime}(x)+A_{1} h+A_{2} h^{2}+O\left(h^{3}\right)
$$

$F(h / 2)-\frac{1}{2} F(h)$
Observe

$$
F(h / 2)=f^{\prime}(x)+A_{1} \frac{h}{2}+A_{2}\left(\frac{h}{2}\right)^{2}+O\left(h^{3}\right) \quad 1-\frac{1}{2}
$$

and

So:

$$
\begin{aligned}
& \frac{1}{2} F(h)=\frac{1}{2} f^{\prime}(x)+A_{1} \frac{h}{2}+\frac{A_{2}}{2} h^{2}+O\left(h^{3}\right)=f^{\prime}(x)+O\left(h^{2}\right) \\
& \quad 1-\frac{1}{2}
\end{aligned}
$$

$$
F(h / 2)-\frac{1}{2} F(h)=\frac{1}{2} f^{\prime}(x)-\frac{A_{2}}{4} h^{2}+O\left(h^{3}\right)
$$

The new rule

$$
F^{(2)}(h)=\frac{F(h / 2)-\frac{1}{2} F(h)}{1-\frac{1}{2}}=f^{\prime}(x)-\frac{A_{2}}{2} h^{2}+O\left(h^{3}\right)
$$

Matlab Demo

We can improve!

$$
f^{\prime}(x)
$$

Our new rule has the asymptotic form:

$$
F^{(2)}(h)=A_{*}+A_{2}^{(2)} h^{2}+O\left(h^{3}\right)
$$

where $A_{*}=f^{\prime}(x)$ is the thing we want to compute.

We can improve!

Our new rule has the asymptotic form:

$$
F^{(2)}(h)=A_{*}+A_{2}^{(2)} h^{2}+O\left(h^{3}\right)
$$

where $A_{*}=f^{\prime}(x)$ is the thing we want to compute.
Observe:

$$
F^{(2)}(h / 2)=A_{*}+\frac{1}{2^{2}} A_{2}^{(2)} h^{2}+O\left(h^{3}\right) .
$$

We can improve!
Our new rule has the asymptotic form: $\frac{1}{2^{2}}$

$$
\frac{1}{2^{2}} F^{(2)}(h)=A_{*}+A_{2}^{(2)} h^{2}+O\left(h^{3}\right)
$$

where $A_{*}=f^{\prime}(x)$ is the thing we want to compute.
Observe:

$$
A_{*}\left(1-\frac{1}{2^{2}}\right)
$$

$$
F^{(2)}(h / 2)=A_{\star}+\frac{1}{2^{2}} A_{2}^{(2)} h^{2}+O\left(h^{3}\right) .
$$

so

$$
F^{(3)}(h)=\frac{F^{(2)}(h / 2)-\frac{1}{2^{2}} F^{(2)}(h)}{1-\frac{1}{2^{2}}}=A_{*}+O\left(h^{3}\right)
$$

$$
F^{(4)}(h)=\frac{F^{(3)}(h / 2)-\frac{1}{2^{3}} F^{(3)}(h)}{1-1 / 2^{3}}
$$

We can improve!

Our new rule has the asymptotic form:

$$
F^{(2)}(h)=A_{*}+A_{2}^{(2)} h^{2}+O\left(h^{3}\right)
$$

where $A_{*}=f^{\prime}(x)$ is the thing we want to compute.
Observe:

$$
F^{(2)}(h / 2)=A_{*}+\frac{1}{2^{2}} A_{2}^{(2)} h^{2}+O\left(h^{3}\right) .
$$

so

$$
\frac{F^{(2)}(h / 2)-\frac{1}{2^{2}} F^{(2)}(h)}{1-\frac{1}{2^{2}}}=A_{*}+O\left(h^{3}\right)
$$

We just made an $O\left(h^{3}\right)$ rule.
You can keep going!

Even Expansions

Recall

$$
\begin{aligned}
& \frac{f(x+h)-f(x-h)}{2 h}=f^{\prime}(x)+c_{1} h^{2}+O\left(h^{4}\right) \\
& f(x+h)=f(x)+f^{\prime}(x) h+\frac{f^{\prime \prime}(x) h^{2}}{2!}+\cdots \\
& f(x-h)=\quad(-h) \quad(-h)^{2} \quad(-h)^{3}
\end{aligned}
$$

Even Expansions

Recall

$$
\begin{gathered}
\frac{f(x+h)-f(x-h)}{2 h}=f^{\prime}(x)+C_{1} h^{2}+O\left(h^{4}\right) \\
F^{(2)}(h)=A_{*}+A_{2}^{(2)} h^{2}+O\left(h^{4}\right)
\end{gathered}
$$

Even Expansions

Recall

$$
\begin{gathered}
\frac{f(x+h)-f(x-h)}{2 h}=f^{\prime}(x)+C_{1} h^{2}+O\left(h^{4}\right) \\
F^{(2)}(h)=A_{*}+A_{2}^{(2)} h^{2}+O\left(h^{4}\right) \\
\frac{F^{(2)}(h / 2)-(1 / 2)^{2} F^{(2)}(h)}{1-(1 / 2)^{2}}=A_{*}+O\left(h^{4}\right)
\end{gathered}
$$

Even Expansions

Recall

$$
\begin{gathered}
\frac{f(x+h)-f(x-h)}{2 h}=f^{\prime}(x)+C_{1} h^{2}+O\left(h^{4}\right) \\
F^{(2)}(h)=A_{*}+A_{2}^{(2)} h^{2}+O\left(h^{4}\right) \\
\frac{F^{(2)}(h / 2)-(1 / 2)^{2} F^{(2)}(h)}{1-(1 / 2)^{2}}=A_{*}+O\left(h^{4}\right)
\end{gathered}
$$

For even expansions you can increase the order by 2 each step.

Integration

The composite trapezoid rule also has an even expansion, but now in terms of n

$$
Q^{(2)}(n)=\int_{a}^{b} f(x) d x+\mathrm{Cn}^{-2}+O\left(n^{-4}\right)
$$

Integration

The composite trapezoid rule also has an even expansion, but now in terms of n

$$
(2 n)^{-2}=2^{-2} n^{-2}
$$

$$
\begin{gathered}
Q^{(2)}(n)=\int_{a}^{b} f(x) d x+C n^{-2}+O\left(n^{-4}\right) \\
\frac{Q^{(2)}(2 n)-2^{-2} Q^{(2)}(n)}{1-2^{-2}}=\int_{a}^{b} f(x) d x+O\left(n^{-4}\right)
\end{gathered}
$$

Integration

The composite trapezoid rule also has an even expansion, but now in terms of n

$$
\begin{gathered}
Q^{(2)}(n)=\int_{a}^{b} f(x) d x+C n^{-2}+O\left(n^{-4}\right) \\
\frac{Q^{(2)}(2 n)-2^{-2} Q^{(2)}(n)}{1-2^{-2}}=\int_{a}^{b} f(x) d x+O\left(n^{-4}\right)
\end{gathered}
$$

(This is Simpson's rule!)

Integration

The composite trapezoid rule also has an even expansion, but now in terms of n

$$
\begin{gathered}
Q^{(2)}(n)=\int_{a}^{b} f(x) d x+C n^{-2}+O\left(n^{-4}\right) \\
\frac{Q^{(2)}(2 n)-2^{-2} Q^{(2)}(n)}{1-2^{-2}}=\int_{a}^{b} f(x) d x+O\left(n^{-4}\right)
\end{gathered}
$$

(This is Simpson's rule!)

