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Recall the first order approximation for the derivative:
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Motivation

Recall the first order approximation for the derivative:
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There is a way to convert a first order approximation into a second
order approximation by doing a little more labor.
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A bit of abstraction
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Our new rule has the asymptotic form:

FO(h) = A, + AP R+ 0(h)

where A, = f'(x) is the thing we want to compute.



Our new rule has the asymptotic form:
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We can improve!

‘(Zfz,
Our new rule has the asympfotic fork\ ,‘.L
l
U o 4, 4490+ o)
Z’L

where A, = f'(x) is the thing we want to compute. J
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We can improve!

Our new rule has the asymptotic form:
2
FA)(h) = A, +Ag Ih2 4 O(h%)

where A, = f'(x) is the thing we want to compute.

Observe: ,
FO(h/2) = A, + ?Agz)hz + O(K).
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We just made an O(h?) rule.

You can keep going!



Recall

flx+h)-f(x-h) > 4
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Recall

flx+h)-f(x-h) > 4
o = f(x)+ Ch*+O(h")

FO(h) = A, + AP R + O(h?)
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Recall

f(x"'h)_f(x_h)_ / 2 4
o7 = f(x)+ Ch*+O(h")

FO(h) = A, + AP R + O(h?)

FO (h/2) - (1/2)*FP (h) 4
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For even expansions you can increase the order by 2 each step.




The composite trapezoid rule also has an even expansion, but now
in terms of n

Q@ (n) = fabf(x) dx +Cn 2+ 0(n™H)
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(This is Simpson's rule!)
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