The goal of this worksheet is for you to be able to write a Matlab code that performs $4^{\text {th }}$ order numerical integration using polynomial interpolation.

1. By hand compute $\int_{a}^{b} x^{n} d x$ for each $n \in \mathbb{N}$.
2. Given five sample points $x_{1}, \ldots, x_{5} \in[a, b]$ we will approximate integration on $[a, b]$ by a rule

$$
\begin{equation*}
\int_{a}^{b} f(x) d x=Q(f)=\sum_{j=1}^{5} A_{j} f\left(x_{j}\right) \tag{1}
\end{equation*}
$$

We demand that

$$
\begin{equation*}
Q(p)=\int_{a}^{b} p(x) d x \tag{2}
\end{equation*}
$$

whenever p is a polynomial of degree at most 4 . By hand, write down what this condition implies in the case $p(x)=1$. That is, substitutue $f(x)=1$ in in equation (2) and obtain an equation relating the A_{j} 's.
3. By substituting $p(x)=x^{k}$ for $1 \leq k \leq 4$, we obtain 4 more equations relating the A_{j} 's. Write down these equations, along with your equation from problem 2, in matrix form. That is, you should have an equation of the form

$$
B\left(\begin{array}{l}
A_{1} \\
A_{2} \\
A_{3} \\
A_{4} \\
A_{5}
\end{array}\right)=\mathbf{b}
$$

and your job is to determine the 5×5 matrix B and the right-hand side vector \mathbf{b}.
4. Write a Matlab function quad4th that takes as input

- A function f.
- The interval end points a and b.
- An array of five points x, the five sample points
and returns $Q(f)$. So the function should have the form

```
function Q = quad4th(f,a,b,x)
end
```

Your function should set up the matrix B and the right-hand side \mathbf{b} from problem 3 and then use MATLAB's backslash operator to compute the weights A_{j}. It should then evaluate Q using equation (1).

Pro tip: You may find the function arrayfun to be helpful. Given a function f and an array x,

$$
\operatorname{arrayfun}(f, x)
$$

returns an array that is the same size as x an contains f evaluated at each entry of x .
5. Test that your function seems to work by applying it to approximate $\int_{0}^{\pi} \sin (x) d x$ with 5 equally spaced sample points that include the interval endpoints. The true answer is 2 , of course. Your answer should be correct to about 10^{-3}.
6. The matlab command rand $(1,5)$ will generate 5 random numbers between 0 and 1 . Use your function quad4th with 5 randomly selected sample points in $[0,1]$ to approximate $\int_{0}^{1} x^{5} d x$. How big is the error? Try this a number of times with randomly selected sample points and oberve the smallest error you see.
7. Use your function quad4th with 5 equally-space sample points including 0 and 1 to approximate $\int_{0}^{1} x^{5} d x$. How big is the error?
8. What is the biggest integer n such that $\int_{0}^{1} x^{n} d x=Q\left(x^{n}\right)$ when using equally-spaced sample points?
9. For an interval $[-1,1]$ there are special sample points, Gauss-Lobotto points given by

$$
\mathbf{x}=[-1,-\sqrt{3 / 7}, 0, \sqrt{3 / 7}, 1] .
$$

For any other interval $[a, b]$ the Gauss-Lobotto points are obtained by translation and scaling, i.e.

$$
a+(\mathbf{x}+1)(b-a) / 2
$$

Using the Gauss-Lobotto sample points on the interval $[0,1]$ determine the largest value of n such that $\int_{0}^{1} x^{n} d x=Q\left(x^{n}\right)$.
10. Use the Gauss-Lobotto sample points on $[0, \pi]$ to approximate $\int_{0}^{\pi} \sin (x) d x$. Compare the error with the error using equally-spaced sample points.
11. When using equally spaced sample points,

$$
\int_{a}^{b} f(x) d x=Q(f)+K f^{(6)}(\eta)
$$

for some $\eta \in[a, b]$. Determine K for the interval $[0,1]$ by subsituting $f(x)=x^{6}$ in the above formula. Then use this value to estimate the error in approximating $\int_{0}^{1} \sin (\pi x) d x$ using equally spaced sample points. Is true error less than the estimate you just computed?
12. Use a technique similar to the previous problem to estimate the error in approximating $\int_{0}^{1} \sin (\pi x) d x$ using Gauss-Lobatto sample points.

