The goal of this worksheet is for you to gain experience with different discrete approximations of the derivative. Throughout we assume that f is a smooth function and x is in its domain.

1. Taylor's Theorem with remainder says

$$
f(x+h)=f(x)+f^{\prime}(x) h+f^{\prime \prime}(\xi) \frac{h^{2}}{2}
$$

for some ξ between x and $x+h$. Derive a similar formula for $f(x-h)$.
2. Use the previous two formulas to show

$$
\frac{f(x+h)-f(x-h)}{2 h}=f^{\prime}(x)+O(h) .
$$

3. In fact, this approximation for the derivative does better. First, apply Taylor's theorem with remainder to

$$
f(x+h)
$$

but now use the second order approximation rather than the first order approximation used in problem 1 . Then do the same thing with $f(x-h)$.
4. Use the previous problem to show

$$
\frac{f(x+h)-f(x-h)}{2 h}=f^{\prime}(x)+O\left(h^{2}\right) .
$$

5. Is it possible that

$$
\frac{f(x+h)-f(x-h)}{2 h}=f^{\prime}(x)+O\left(h^{3}\right) ?
$$

Try using a third order approximation to $f(x+h)$ and $f(x-h)$ to see what happens.
6. The following formula is another approximation for the first derivative:

$$
f^{\prime}(x) \approx \frac{-3 f(x)+4 f(x+h)-f(x+2 h)}{2 h} .
$$

To see this, Use first order Taylor approximations to show that

$$
\frac{-3 f(x)+4 f(x+h)-f(x+2 h)}{2 h}=f^{\prime}(x)+O(h) .
$$

7. Find the largest value of k such that

$$
\frac{-3 f(x)+4 f(x+h)-f(x+2 h)}{2 h}=f^{\prime}(x)+O\left(h^{k}\right) .
$$

To do this, use Taylor approximations of high enough order so that

$$
\frac{-3 f(x)+4 f(x+h)-f(x+2 h)}{2 h}=f^{\prime}(x)+C h^{k}+O\left(h^{k+1} .\right.
$$

for some C that need not be zero.
8. In the previous problems, I gave you the derivative approximation. But you can derive your own rules. Find coefficeints A, B and C such that

$$
f^{\prime \prime}(x) \approx A f(x)+B f(x+h)+C f(x+2 h)
$$

has the highest order accuracy possible. That is, you want

$$
A f(x)+B f(x+h)+C f(x+2 h)=f^{\prime \prime}(x)+O\left(h^{k}\right)
$$

where k is as large as possible. You'll want to replace each of $f(x+h)$ and $f(x+2 h)$ with an expression from Taylor's Theorem and determine conditions on A, B and C to solve for them.

