Consider the matrix

$$
A=\left(\begin{array}{ccc}
\frac{1}{3} & 0 & 0 \\
1 & 1 & 1 \\
\frac{1}{2} & 0 & 1
\end{array}\right)
$$

1. If we were to start Gaussian elimination on B with partial pivoting, we would need to exchange rows 1 and 2 . Find a 3×3 exchange matrix E_{1} that has the property that for any 3×3 matrix $C, E_{1} C$ exchanges rows 1 and 2 and keeps row 3 in place.
2. What is $E_{1} \cdot E_{1}$? Can you predict the answer without doing the matrix multiplication?
3. Let L_{0} be the 3×3 identity matrix and let $U_{0}=A$. These are your starting approximations for L and U; we'll build them up as we progress. For now, justify the following equation.

$$
E_{1} A=\left(E_{1} L_{0} E_{1}\right)\left(E_{1} U_{0}\right) .
$$

4. Let $\hat{U}_{0}=E_{1} U_{0}$ and $\hat{L}_{0}=E_{1} L_{0} E_{1}$.
5. Why is $E_{1} A=\hat{L}_{0} \hat{U}_{0}$?
6. Write down \hat{U}_{0} and \hat{L}_{0} explicitly.
7. How is \hat{U}_{0} related to U_{0} ?

It's ok if \hat{L}_{0} is a little mysterious at this point. At any rate, \hat{L}_{0} and \hat{U}_{0} are your new approximations for L and U.
5. Now \hat{U}_{0} is in good shape for the first round of Gaussian elimination.

1. Clear the first column to compute U_{1} and L_{1},
2. Verify by multiplying that

$$
E_{1} A=L_{1} U_{1} .
$$

6. If you have computed U_{1} correctly, you'll see that the pivot for column 2 lies in row 3 . Bummer! Find an exchange matrix E_{2} that exchanges rows 2 and 3.
7. Justify the following equation.

$$
E_{2} E_{1} A=\left(E_{2} L_{1} E_{2}\right) E_{2} U_{1} .
$$

8. Compute $\hat{L}_{1}=E_{2} L_{1} E_{2}$ and $\hat{U}_{1}=E_{2} U_{1}$. These are our new approximations to L and U.
9. How is \hat{U}_{1} related to U_{1} ?
10. This is the really fun and important question. How is \hat{L}_{1} related to L_{1} ? Make sure you talk to me before progressing past this point.
11. Why is

$$
E_{2} E_{1} A=\hat{L}_{1} \hat{U}_{1} ?
$$

(Do no hard work; just look at the last two problems).
12. Peform the final round of Gaussian elimination to clear the second column and compute L_{2} and U_{2}.
13. Verify that $E_{2} E_{1}$ is a permutation matrix P.
14. What are P, L and U such that

$$
P A=L U ?
$$

15. Use P, L and U to solve $A x=b$ where

$$
b=\left(\begin{array}{l}
6 \\
4 \\
2
\end{array}\right)
$$

