Consider the matrix

$$A = \begin{pmatrix} \frac{1}{3} & 0 & 0\\ 1 & 1 & 1\\ \frac{1}{2} & 0 & 1 \end{pmatrix}$$

1. If we were to start Gaussian elimination on *B* with partial pivoting, we would need to exchange rows 1 and 2. Find a 3×3 exchange matrix E_1 that has the property that for any 3×3 matrix *C*, E_1C exchanges rows 1 and 2 and keeps row 3 in place.

- **2.** What is $E_1 \cdot E_1$? Can you predict the answer without doing the matrix multiplication?
- **3.** Let L_0 be the 3×3 identity matrix and let $U_0 = A$. These are your starting approximations for *L* and *U*; we'll build them up as we progress. For now, justify the following equation.

$$E_1A = (E_1L_0E_1)(E_1U_0).$$

- **4.** Let $\hat{U}_0 = E_1 U_0$ and $\hat{L}_0 = E_1 L_0 E_1$.
 - 1. Why is $E_1 A = \hat{L}_0 \hat{U}_0$?
 - 2. Write down \hat{U}_0 and \hat{L}_0 explicitly.
 - 3. How is \hat{U}_0 related to U_0 ?

It's ok if \hat{L}_0 is a little mysterious at this point. At any rate, \hat{L}_0 and \hat{U}_0 are your new approximations for *L* and *U*.

- 5. Now \hat{U}_0 is in good shape for the first round of Gaussian elimination.
 - 1. Clear the first column to compute U_1 and L_1 ,
 - 2. Verify by multiplying that

$$E_1A = L_1U_1.$$

- **6.** If you have computed U_1 correctly, you'll see that the pivot for column 2 lies in row 3. Bummer! Find an exchange matrix E_2 that exchanges rows 2 and 3.
- 7. Justify the following equation.

$$E_2 E_1 A = (E_2 L_1 E_2) E_2 U_1.$$

- **8.** Compute $\hat{L}_1 = E_2 L_1 E_2$ and $\hat{U}_1 = E_2 U_1$. These are our new approximations to *L* and *U*.
- **9.** How is \hat{U}_1 related to U_1 ?
- 10. This is the really fun and important question. How is \hat{L}_1 related to L_1 ? Make sure you talk to me before progressing past this point.
- **11.** Why is

$$E_2 E_1 A = \hat{L}_1 \hat{U}_1$$
?

(Do no hard work; just look at the last two problems).

- 12. Perform the final round of Gaussian elimination to clear the second column and compute L_2 and U_2 .
- **13.** Verify that E_2E_1 is a permutation matrix *P*.
- **14.** What are P, L and U such that

PA = LU?

15. Use *P*, *L* and *U* to solve Ax = b where

$$b = \begin{pmatrix} 6\\4\\2 \end{pmatrix}$$