Math F426: LU Factorization with Partial Pivoting October 7, 2020

Consider the matrix

100
A=[1 11
1
101

1. If we were to start Gaussian elimination on B with partial pivoting, we would need to
exchange rows 1 and 2. Find a 3 x 3 exchange matrix E, that has the property that for any
3 x 3 matrix C, E,C exchanges rows 1 and 2 and keeps row 3 in place.

2. What is E; - E;? Can you predict the answer without doing the matrix multiplication?

3. Let L, be the 3 x 3 identity matrix and let U, = A. These are your starting approximations
for L and U; we'll build them up as we progress. For now, justify the following equation.

ElA = (E]L()E])(El Uo)

4. Let UO = El U() and IA,O = ElL()E]-

1. Why is EIA = to (_"]0?
2. Write down U, and L, explicitly.

3. How is U, related to Uy?

It’s ok if Lo is a little mysterious at this point. At any rate, L, and Uy are your new approx-
imations for L and U.
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5.

10.

11.

Now U is in good shape for the first round of Gaussian elimination.

1. Clear the first column to compute U, and L;,

2. Verify by multiplying that
EIA = L1 Ul.

. If you have computed U, correctly, you'll see that the pivot for column 2 lies in row 3.

Bummer! Find an exchange matrix E, that exchanges rows 2 and 3.

Justify the following equation.

EzElA = (EleEz)Ez Ul.

Compute L, = E,L,E, and U, = E,U,. These are our new approximations to L and U.

. How is U, related to U;?

This is the really fun and important question. How is L, related to L,? Make sure you talk
to me before progressing past this point.

Why is
EzElA = L1 Ul?

(Do no hard work; just look at the last two problems).
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12.

13.

14.

15.

Peform the final round of Gaussian elimination to clear the second column and compute
L2 and Uz.

Verity that E,E, is a permutation matrix P.

What are P, L and U such that
PA=LU?

Use P, L and U to solve Ax = b where

S
1l
N



