The goal of this worksheet is for you to be able to write a Matlab code that performs $L U$ factorization with partial pivoting.

There are some Matlab tricks that you will need to know in order to make your life easier.
Let

$$
A=\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 0
\end{array}\right)
$$

You should enter this matrix into Matlab.

1. What is the result of typing $A(1,:)$?
2. What is the result of typing $A(2,:)$?
3. What is the result of typing $A(:, 2)$?
4. What is the result of typing $\mathrm{A}(2,1: 2)$?
5. What is the result of typing $\mathrm{A}(2,2: 3)$?
6. What is the result of typing $\mathrm{A}([1,3,2],:)$?
7. What is the result of typing $B=A ; B(2,:)=[-1,3,5]$?
8. What does $\mathrm{x}=\mathrm{A}(2,:)$ do?
9. At the Matlab command line, type the following:
$\mathrm{B}=[123 ; 456 ; 780] ;$
$B(2,:)=B(2,:)-4 * B(1,:)$

How is the new value of B related to the old value?
10. In your group, write a function $[L, U]=m y l u(A)$ that performs $L U$ decomposition without pivoting. You may already have code that you have prepared for the upcoming homework and are welcome to use it. Verify that your function works by testing it on

$$
A=\left(\begin{array}{ccc}
-4 & 3 & 3 \\
20 & -13 & -14 \\
-16 & 8 & 8
\end{array}\right) .
$$

You already performed the $L U$ decomposition of this by hand on the previous worksheet. And you should be able to compare $L U$ versus A in Matlab and verify that they are the same up to rounding.
11. Going back to Matlab, what is the result of:

```
\(x=[4,-19,7,-1]\)
\(\mathrm{v}=\max (\mathrm{x})\)
\([\mathrm{v} 2, \mathrm{i}]=\max (\mathrm{x})\)
```

12. What is the result of:
```
x=[ 4, -19, 7, -1]
v=max(abs(x))
[v2,i]=max(abs(x))
```

13. What is the result of:
$A=[123 ; 356 ; 780]$
$[\mathrm{v}, \mathrm{i}]=\max (\operatorname{abs}(\mathrm{A}(1: 3,1)))$
14. What is the result of:
```
A=[1 2 3; 3 5 6; 7 8 0]
```

$[\mathrm{v}, \mathrm{i}]=\max (\operatorname{abs}(\mathrm{A}(2: 3,2)))$

Pay close attention to i.
15. What is the result of:

```
A=[1 2 3; 3 5 6; 7 8 0]
tmp = A(1,:);
A(1,:) = A(2,:);
A(2,:) = A(1,:);
A
```

16. Suppose
$\mathrm{L}=[1000 ; 2100 ; 3410 ; 56011]$

Find Matlab commands that exchange the portions of rows 3 and 4 to the left of the diagonal (so the entries $[3,4]$ should exchange with the entries $[5,6]$).
17. Suppose instead
$\mathrm{L}=[1000 ; 2100 ; 3010 ; 50011]$

Find commands that exchange the portions of rows 2 and 4 to the left of the diagonal. Stop and talk to me before proceeding.
18. Consider the matrix

$$
A=\left(\begin{array}{cccc}
15 & -16 & 20 & 72 \\
6 & -5 & 4 & 20 \\
9 & -10 & 12 & 51 \\
3 & -2 & 1 & 7
\end{array}\right)
$$

Verify that the matrices

$$
P=\left(\begin{array}{cccc}
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{array}\right) ; \quad L=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
2 & 1 & 0 & 0 \\
3 & 4 & 1 & 0 \\
5 & 6 & 0 & 1
\end{array}\right) ; \quad U=\left(\begin{array}{cccc}
3 & -2 & 1 & 7 \\
0 & -1 & 2 & 6 \\
0 & 0 & 1 & 6 \\
0 & 0 & 3 & 1
\end{array}\right) ;
$$

satisfy

$$
P A=L U .
$$

At the Matlab command line, perform a step of Gaussian elimination with partial pivoting to clear column 3. What are the new matrics P, L and U ? Verify that $P A=L U$ still.
19. With your partner, write a function $[\mathrm{P}, \mathrm{L}, \mathrm{U}]=$ myplu(A) that performs $L U$ decomposition with partial pivoting and returns a permutation matrix P, a lower-triangular matrix L, and an upper triangular matrix U such that $P A=L U$. Test that your function works by verifying it against your solution to Part B of the previous worksheet.
20. Use your function myplu along with your function usolve written for last week's homework and the function lsolve on the course web page to solve the system $A x=b$ where

$$
b=[21,-101,72]^{T} .
$$

21. If you get here and are bored, modify your myplu function so that instead of a full permutation matrix P it returns a vector where the entry for each row contains the column index where a 1 lies. For example,

$$
P=\left(\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{array}\right)
$$

is represented by $[4,2,3,1]^{T}$.

