Chapter 37: 3. If a and b are even integers, then so is a + b.

Proof. Let a and b be even integers. Then there exist integers j and k such that a = 2j and b = 2k. But then

$$a + b = 2j + 2k = 2(j + k). (1)$$

Since $j + k \in \mathbb{Z}$, a + b is even.

Worksheet: 9. Plot $\sin(x)$ and $\cos(x)$ for $-\pi \le x \le \pi$ on the same graph. Make sure the graph is labeled nicely.

Solution:

```
octave:1> x=[-pi:0.01:pi];
octave:2> plot(x,sin(x),x,cos(x));
octave:3> set(gca, "fontsize", 14 )
octave:4> xlabel("x");ylabel("y");title("sin and cos");
octave:5> legend("sin","cos");
```

