Supplemental 1: Find n so that degree n polynomial interpolation of $f(x)=\cos (3 x)$, using equally-spaced points on [0,2], gives a maximum approximation error $|f(x)-p(x)|$ which is less than 10^{-6} on [0,2].

Then use MATLAB's polyfit and polyval and a bit of trial and error to find the actual smallest n needed to approximate $f(x)=\cos (3 x)$ to within 10^{-6}.

Text 8.9:

Text 8.7 (a,b):

Text 8.8:

Supplemental 2: At the bottom of page 198 is an inequality that describes the error from the piecewise-linear interpolant $\ell(x)$ for $f(x)$ on $[a, b]$. Suppose we have equally spaced points $a=x_{0}<x_{1}<\cdots<x_{n}=b$ with spacing $h=x_{i}-x_{i-1}$. Then:

$$
|f(x)-\ell(x)| \leq \frac{M h^{2}}{8}
$$

for all $x \in[a, b]$. In this inequality we are assuming $f^{\prime \prime}(x)$ exists and is bounded by the number M, so that $\left|f^{\prime \prime}(x)\right| \leq M$ for all $x \in[a, b]$. Use this inequality to find n so that $|f(x)-l(x)| \leq 10^{-6}$ for $x \in[0,2]$ if $f(x)=\cos (3 x)$.

