Supplemental 1: Consider these three points: $\{(1,1),(2.5,8),(4,5)\}$. Find the polynomial $P(x)$ of degree 2 which passes through these points. Do this three different ways, by using
(a) the Vandermonde matrix method,
(b) the Newton form and its triangular matrix method, and
(c) the Lagrange form.

Supplemental 2: Consider the x coordinates $x_{0}=0, x_{1}=\pi / 3, x_{2}=2 \pi / 3$ and $x_{3}=\pi$.
a) Plot the four Lagrange basis functions $\phi_{k} k=0, \ldots, 4$ on a single graph with domain $[0, \pi]$.
b) Plot the four Newton interpolation basis functions ψ_{k}, each on its own individual graph.
c) Plot the graph of $\sin (x)$ along with its Lagrange interpolant $p_{\text {Lag }}$.
d) Plot the graph of $\sin (x)$ along with its Newton interpolant $p_{\text {Newt }}$.
e) What is the relative error of $p_{\mathrm{Lag}}(\pi / 4)$?

Exercise 8.1:

Exercise 8.2:

Midterm, problem 6:

