Existère of JZ $T = \{ x : x^2 \leq 2 \}$ +12 1 m Mertal image 1 3 T except we havent shown JZ is a thing. $\tau \neq \phi$ (0 $\in \tau$) Tbounded above (X,YZD X <Y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y = x < y 3 is an upper bound)

Let Z = sup T. 2272 $C|um: z^2 = Z.$ Suppose to the controny that 2222.) Let $E = 2 - 2^2 > 0$. Prok n, EN such that 1, 2 E. Pick $n_2 \in \mathbb{N}$ such that $\frac{2z}{n_2} \leq \frac{z}{2}$ i.e. $\frac{1}{m} \left(\frac{\varepsilon}{4z} \right)$. Thus is possible since

27,170 no 1 ET. Let n= max (1,12) so $1 \leq 1$ and $1 \leq 1$. Observe (2+1)= 22+23+ 12 $2 2^{2} LZ = \frac{1}{n_{2}} \frac{1}{n_{1}} \frac{1}{n_{1}}$ $\left(2+1\right)^{2}$ $\begin{cases} z^2 + \frac{zz}{n_2} + \frac{1}{n} \end{cases}$ $\left\{ \begin{array}{c} z^2 + \xi \\ z \end{array} + \xi \\ z \end{array} \right\}$

 $= 2^{2} + 2$ = 2 . Hence (21) 22. That is 2+1, ET. Bat Z+ n>Z. This contradicts The fact that Z is an upper band for To The other possibility is ruled out by HW. ZZ72 is impossible.

Condinality (size of sets) Def: Two sets A, B have the same Cordinality of there exists a bijection f: A >B. Recall: A function 13 bijectue A.t 13 1-1 and onto (injective) (surjective) injectuc: If f: A>b, f is injective

if whereve $f(a_i) = f(a_2)$ $z_7 \quad \alpha_1 = \alpha_2.$ Identically, if when eve $a_1 \neq a_2$, $f(a_1) \neq f(a_2)$. sorjective (f: A > B) For all bEB there exists a EA with f(a) = b.

micchina surjature f(A) = B

Recall: a function is bijective if and only if has an inverse function These sets hue differnt cardinality.

Goal: N and R do not have the Some condinality. I and IN have the same carchinality. f(k)= { k/2 k even f: N-7Z

Exercise: Find an inverse function for F to prove f is a bijection. We will write ANB to nem A huss The cordinality of B. Exocise: Show that is on equivalance relation between sets.

e.g. $(0,1) \sim (0,\infty)$ $f(x) = \underbrace{X}_{1+x} \quad f: \mathbb{R} \to (0, 1)$ 04 - 4

Sizes a	f sets:	· · ·	· · ·	· · ·	· · ·	· · ·	· · ·	•	· · ·	· · ·
	 empty finite 	· · ·	· · ·	· · ·		· · ·	· · · · · · · · · · · · · · · · · · ·	•	· · ·	· · · · · · · · · · · · · · · · · · ·
	 infante coantubly infante 		· · ·	· · ·		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	•	· · ·	· · · · · · · · · · · · · · · · · · ·
	 at most contable uncontable 	· · ·	· · ·	· · ·	· · · · · · · · · · · · · · · · · · ·	· · ·	· · · · · · · · · · · · · · · · · · ·	•	· · ·	· · · · · · · · · · · · · · · · · · ·
Erp}&:	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$									
		• •			•	•••		•	• •	• •

Def: For KEN Sk= 21,2,3,...,k3 Def: A set A 13 finite if ANSK for some KEIN. If & were finite then there would be a bijection $f: s_k \rightarrow \phi$ for same k. Observe that 1 E Sk. But it is mpossible

for f to assign 1 a value.
Def: A set is infinite if
it not finite.
We will see, shortly, that IN is infinite
Def: A set is coortably infinite if it has the cardinality of W

Def: A set is at most courtable if it is either empty or finite or countably infaite. Def: A set is un countable if it is infinity but not countably infinite. Text: countable = countably infinite Many ollos: courtable = at most coortable