Existence of $\sqrt{2}$

$$
T=\left\{x: x^{2} \leq 2\right\}
$$

Metal inane

except we hent shown $\sqrt{2}$ is a thing.
$\tau \neq \phi \quad(0 \in \tau)$
T bounded above $\left(x, y \geqslant 0 \quad x \leqslant y \Leftrightarrow x^{2} \leqslant y^{2}\right.$ 3 is an upper bound)

Let $z=\operatorname{sop} \tau$.
Clause: $z^{2}=2$.
Suppose to the contrary that $z^{2}<2$.
Let $\varepsilon=2-z^{2}>0$.
Prick $n_{1} \in \mathbb{N}$ such that $\frac{1}{n_{1}}<\frac{\varepsilon}{2}$.
Prick $n_{2} \in \mathbb{N}$ such that $\frac{2 z}{n_{2}}<\frac{\varepsilon}{2}$; i.e. $\frac{1}{m_{2}}<\frac{\varepsilon}{4 z}$. Thus is possible since

$$
z \geqslant 1>0 \text { as } 1 \in T \text {. Let } n=\max \left(\Lambda_{1}, \Lambda_{2}\right)
$$

so $\frac{1}{n} \leqslant \frac{1}{n_{1}}$ and $\frac{1}{n} \leqslant \frac{1}{n_{2}}$.
Observe $\left(z+\frac{1}{n}\right)^{2}=z^{2}+\frac{2 z}{n}+\frac{1}{n^{2}}$

$$
\begin{aligned}
& z z^{2}<2 \\
&\left(z+\frac{1}{n}\right)^{2} \leq z^{2}+\frac{2 z}{n_{2}}+\frac{1}{n_{1}^{2}} \\
& \leq z^{2}+\frac{2 z}{n_{2}}+\frac{1}{n_{1}} \\
&<z^{2}+\frac{\varepsilon}{2}+\frac{\varepsilon}{2}
\end{aligned}
$$

$$
\begin{aligned}
& =z^{2}+\varepsilon \\
& =2 .
\end{aligned}
$$

Hence $\left(z+\frac{1}{n}\right)^{2}<2$. That is $z+\frac{1}{n} \in T$.
Bat $z+\frac{1}{n}>z$. This contradicts
the fact that z is an upper baud for T_{0}
The other possibility is ruled out by HW. $z^{2}>2$ is impossible.

Condinalidy (size of sets)
Def: Two sets A, B have the same cordinallaty if there exists a bijection

$$
f: A \rightarrow B .
$$

Recall: A function 3 b bijective if it is 1-1 and onto (injective) (soriactive)
injectac: If $f: A \rightarrow B, f$ is infective
if wherever $f\left(a_{1}\right)=f\left(a_{2}\right)$

$$
\Rightarrow a_{1}=a_{2} .
$$

Identically, if wherever

$$
a_{1} \neq a_{2}, f\left(a_{1}\right) \neq f\left(a_{2}\right)
$$

sonjective $(f: A \rightarrow B)$
For all $b \in B$ there exists $a \in A$ with $f(a)=b$.

Recall: a function is bijective if and only if it has an inverse function.

These sets hue different cardinality.

Goal: \mathbb{N} and \mathbb{R} do not have the same cardinality.

If and \mathbb{N} have the some cardinality.

$$
\begin{aligned}
& \ldots \ldots, \begin{array}{lll}
k / 2 & k \text { even } & f: N \rightarrow \mathbb{Z} \\
\frac{1-k}{2} & k \text { odd }
\end{array}
\end{aligned}
$$

Exercise: Find an inverse function for f to prove f is a bijection.

We will wrote $A \cup B$ to sean
A hus the cordinalidy of B.
Exercise: Shaw that ~ 13 on equivalace relation between sets.
e.g. $(0.1) \sim(0, \infty)$

$$
\begin{aligned}
f(x)=\frac{x}{1+x} & f: \mathbb{R} \rightarrow(0,1) \\
& 0<\frac{x}{1+x}<1
\end{aligned}
$$

Sizes of sets:

- empty
- finite
- infarte
- coantanly infinde
- at most coontable
- uncoontable

Enptes: ϕ

Def: For $k \in \mathbb{N}$

$$
s_{k}=\{1,2,3, \ldots, k\} .
$$

Def: A set A is finite if
$A \sim S_{k}$ for some $k \in \mathbb{N}$.
If ϕ were finite then there would be a bijection $f: s_{k} \rightarrow \phi$ for same k. Observe that $1 \in S_{k}$. But it is mpessilte
for f to assign 1 a value.
Def: A set is infinite if it not finite.
We will see, shortly, that \mathbb{N} is infinite

Def: A set is coontadly infinite if it has the cardinality of N.

Def: A set is at most countable if it is either empty or fincte or coontably infuite.

Def: A set is un countuble if it is infinity but not coontably infinite.

Text: comntuble $=$ coontably infucte
Mamy othos: countble $=$ at mort coontable

