

Then (Bolzano-Weierstrass)
Even boarded sequence hus a cowesent subsqance
Pf: Let $\left\{x_{n}\right\}$ be a bounded sequace and perk $\mu \in \mathbb{R}$ such that $\left|x_{n}\right| \leq \mu$ for all n.
We first shaw that we can build nested
closed intervals $I_{1} \supseteq I_{2} \supseteq I_{3} \supseteq \ldots$
such that $\left|I_{k}\right|=4 M 2^{-k}$ ail such that I_{k} contains infinitely many toms of the sequence.

Let $I_{1}=[-\mu, \mu]$, and note that $\left|I_{1}\right|=2 M$

$$
=4 \mu \cdot 2^{-1}
$$

and that I_{1} contains the entice sequerce
Now suppose $I_{0, \ldots,} I_{j}$ hare bees constructed with the desire properties.

Diode I_{j} is to two equal least closed I_{1} subutervals I_{+}ad $I_{\text {. }}$. Observe that

$$
\begin{aligned}
\left|I_{+}\right|=\left|I_{-}\right| & =\left|I_{j}\right| / 2 \\
& =4 M \cdot 2^{-j} / 2=4 \mu \cdot 2^{-(-j-1)}
\end{aligned}
$$

Moreover one of I_{1} or I_{-}must contain infuitely many toms of the sequence sike I_{j} does.
From the NIP we know that there exists
some $x \in \bigcap I_{j}$.
Let $n_{1}=1$ so $x_{1} \in I_{1}$.
Proc n_{2} to be the lent integer such that
a) $n_{2}>n_{1}$
b) $x_{1_{2}} \in I_{2}$.

Contours inductively we can pick indices n_{k} such that $n_{k+1}>n_{k}$ ad $x_{n_{k}} \in I_{k}$ 。

I clave m $x_{n_{k}} \rightarrow x, \quad\left(\begin{array}{l}\text { Execase! } \\ 2^{k} \geqslant k \forall k \in \mathbb{N}\end{array}\right.$
Let $\varepsilon>0$. Pick $k \in \mathbb{N}$ such that

$$
2 M 2^{-k}<\varepsilon . \frac{2^{-k}<\frac{\varepsilon}{2 M}}{2^{-k} \rightarrow 0}
$$

Then if $k \geqslant k \quad x_{n_{k}}, x \in I_{k}$
so $\left|x-x_{n_{k}}\right| \leq\left|I_{k}\right|=2 M 2^{-k} \leq 2 M 2^{-K_{<\varepsilon}}$.

$$
0 \leqslant 2^{-k} \leqslant \frac{1}{k}
$$

When does a sequence converge?
a) Not bonded \Rightarrow does not converse
b) Monotane + bounded \Rightarrow converos
c) Boonded \Rightarrow a subsoquere coweges
d) If the tems are seffing closert clober together, the sequere convesos,
$\lim _{n \rightarrow \infty} a_{n}=a$ "the tems a_{n} get closer + closer to a"
Formully: Gewen $\varepsilon>0$ there excots $N \in \mathbb{N}$ so that $f a \geqslant N,\left|q_{n}-a\right|<\varepsilon$.
on's get closer + closer together?
Def: We say a sequere (an) is Candy if for even $\varepsilon>0$ There exists $N \in \mathbb{N}$ such that if $m, n \geqslant N$ then $\left|a_{n}-a_{n}\right|<\varepsilon$.

Are conversant sequeres Cauchy? $N_{n \geqslant N}$

Goal: Cauchy sequaces converge!
First step: Candy sequences are bounded PF: Suppose (an) is a Curdy sequence.

Pick $N \in \mathbb{N}$ such that if $n, u n \geqslant N$, $\left|a_{1}-a_{n}\right|<1$.
Let $M=\max \left(\left|a_{1}\right|,\left|a_{2}\right|, \ldots,\left|a_{N-1}\right|,\left|a_{N}\right|+1\right)$. If $n \leqslant N$ then clearly $\left|a_{n}\right| \leqslant \mu$.

Moreooer, if $n \geqslant N$ than

$$
\begin{aligned}
\left|a_{n}\right| & =\left|a_{n}-a_{N}+a_{N}\right| \\
& \leqslant\left|a_{n}-a_{N}\right|+\left|a_{N}\right| \\
& <1+\left|a_{N}\right| \\
& \leqslant M_{0}
\end{aligned}
$$

Geal: Candy sequacos convese,
Candy \Rightarrow bourded \Rightarrow has a convesent weber
superce

Thin (Candy Criterion)
A sequere converges if and ally of it is Cauchy.

Pf: We have already seen that convergent sequences are Cauchy.
Let (an) be a Cauchy sequence. Is is bowed and so by $B W$ it has a convergent subsequence $\left(a_{n_{k}}\right)$ converging to sone limit a.

Let $\varepsilon>0$.
Pick N so tout if $n, m \geqslant N$ then $\left|a_{n}-a_{m}\right|<\varepsilon / 2_{2}$.

$$
\hat{k} \geqslant k
$$

Pick $K \in N$ such that if $k \geqslant K$ then $\left|a-a_{n_{k}}\right|<\varepsilon / 2$. Without loss of gereality we con assume $K \geqslant N$. As a consequence, ${ }^{n} K \geqslant K \geqslant N$
as well. $\quad\left(n_{k} \geqslant k\right)$
Now if $n \geqslant N$,

$$
\begin{aligned}
\left|a-a_{1}\right| & =\left|a-a_{n_{K}}+a_{n_{K}}-a_{n}\right| \\
& \leqslant\left|a-a_{n_{K}}\right|+\left(a_{n_{K}}-a_{n} \mid\right. \\
& <\frac{\varepsilon}{2}+\frac{\varepsilon}{2} 厶_{\text {candy }} \\
& =\varepsilon .
\end{aligned}
$$

