10:17 10:15 Thm (Bolzano-Weierstrass) Every boarded sequence hus a convegent subsquace Pf: Let Exaz be a bounded sequere and pick MER such that Ixal SM far all n, We first show that we can build nested

closed mterrils I, Z Jz Z Jz Z Such that $|I_k| = 4M2^{-k}$ and such that I've contains infinitely many toms of the sequence. Let $I_i = [-M, M]$, and note that $|I_i| = ZM$ =4M.21 ad that I, contains the entire sequence. Now suppose In. ..., Is have been constructed with the dosind proporties.

Dourde Is into two equal length closed I, subintorvals It ad I_ Observe that Ij $|I_{1}| = |I_{1}| = |I_{1}|/2$ $= 4M \cdot 2^{-5}/z = 4A \cdot 2^{-(j+1)}$ Moreover one of I, or I_ must contain infuitely many tems of the sequere silve I; loes. From the NIP we know that there exists

sme x e N Ij. Let $n_1 = 1$ so $x_{n_1} \in I_1$. Prok nz to be the least integer such a) $n_2 > n_1$ that b) $X_{\Lambda_2} \in I_2$. Containing inductively we can pick induces NKH > NK ad nk such that XnKG IK.

> Exercise! 2kz k & kell I clavm Xnk ~ X. Let $\varepsilon = 0$. Pick K.E.IN such that $2M2^{-K} \leq \varepsilon = 2^{-K} \leq \frac{\varepsilon}{2M}$ $2M2^{-K} \leq \varepsilon = 2^{-K} \leq \frac{\varepsilon}{2M}$ $z^{-K} = 0$ Then if $k \geq K$ $x_{nk}, x \in I_{k}$ 50 $|X - X_{n_{k}}| \leq |I_{k}| = 2M2^{-k} \leq 2M2^{-K} < \epsilon$ 052-K51

. When does a sequerce converse? a) Not bounded => loes not converse 6) Monstore + bounded=7 converges

c) Bounded => ~ subsequence converges d) If the tems are setting closert closer togette, the sequence conveges "he tems an get lim an = a obsert closer to a " 1-200 Formally: Given EZO Mare exists NEN 5. that if my N, | qn-a | LE.

on's get closer + closer together? Def: We say a sequere (on) is Cauly if for every E 70 Three exists NEN such that $a_n - a_m < \varepsilon$. ,f m, n 7 N Hay $N_{n7}N$ =7 $a_{n}e$) Are conversat sequeres Cauchy? my,N a+E/2 a-E/2 ame an - am <

Goal: Cauchy sequences converse! First step: Caudy sequences are bounded PF: Suppose (an) is a Caudy sequence. Pick NG IN such that if n, un > N an-am < 1. Let $M = \max(|a_1|, |a_2|, ..., |a_{N-1}|, |a_N|+1)$. If n<N then clearly | an | < M.

Moreover, if NZN they $|a_n| = |a_n - a_N + a_N|$ $\leq |a_n - a_N| + |a_N|$ $\zeta 1 + |a_N|$ 5 M. Goal: Caudy sequences converse. (any => bounded => has a campy => bounded => has a convegent subsequere

Thm (Caudy Criterion) A sequere conveges of and only of it
A sequere conveges 13 and only 75 11 is Canchy.
PS: We have already seen that convergent sequences are Cauchy.
Let (an) be a Cauchy sequence.
Is is howded and so by BU it has
a convergent subsequence (ank) convergny
to sone limit a.

Let 670. Prok N so that if n, m > N they N KZK $|a_n-a_m| \leq \mathcal{E}(2,$ Pick KEN such that if k>K they | a - ank | < E/2. Without loss of generality we can assure KZN. As a consequence, "K > K > N

as well. (nk ? K) Now of n> N, $a - a_1 = a - a_1 K + a_1 - a_1$ $\leq |a - a_n| + |a_n - a_n|$ 2 Carcley [] Conversace