Last class:
Monotore Convereare Thim.
$\left(x_{1}\right)$, nonotone increusdig and boaded above
\Rightarrow convegere $\left[x_{n} \rightarrow\right.$ sup $\left.\left\{x_{n}: n \in \mathbb{N}\right\}\right]$

If (x_{1}) is nonotore and sould then if convegos.

$$
\left|x_{1}\right| \leq M \quad-M \leq x_{1} \leq M
$$

Monotone decreasing: $\left(x_{1}\right) \quad x_{n+1} \leqslant x_{1 n} \forall n \in \mathbb{N}$
Mar easis
$x_{\text {arl }} \geqslant x_{4}$
Monotone: monotere inc or doc

A sequence 1 "s bounded below if $\left(x_{1}\right)$
there exasts $m \in \mathbb{R}$ such that

$$
m \leq x_{n} \quad \forall n \in \mathbb{N} \text {. }
$$

Exercse: A sequere is boonded iff it is bounded above und bounded below.

Claids: A wontore increasay saquere is boudal below.
$\left(x_{n}\right)$ monotone inc.
x_{1} is a lover hand $x_{1} \leq x_{1}$
If $x_{1} \leq x_{1}$ then $x_{1} \leq x_{1} \leq x_{1}+1$
Exercise show that if $\left(x_{n}\right)$ is montane decreasing then $-x_{1}$ is monotne increasing and use this to establish the MCT for decreasing sequaces
E.g: Conside a sequere

$$
\left.\sum d_{k}\right\}_{k=0}^{\infty}
$$

where each $d_{k} \in\{0,1,2, \ldots, q\}$.

$$
x_{1}=\sum_{k=0}^{n} \frac{d_{k}}{10^{k}} \quad x_{1+1}=x_{n}+\frac{d_{1+1}}{10^{n+1}}
$$

e. g.

$$
\begin{aligned}
& d_{0}=3 \\
& d_{1}=1 \\
& d_{2}=4
\end{aligned}
$$

$$
x_{0}=3
$$

$$
x_{1}=3+\frac{1}{10}=3.1
$$

$$
x_{2}=3+\frac{1}{10}+\frac{4}{100}=3.14
$$

The x_{n}^{\prime} 's me monotone increasing.
To show the tais converge it is enough to show that the sequere is boarded above.

$$
\begin{array}{ll}
& d_{0}=9 \\
x_{0} \leqslant 9 & d_{1}=7 \quad x_{2}=9+\frac{7}{10}=q 7 \\
x_{1} \leqslant 9.9 & \\
x_{2} \leqslant 9.99 & x_{k} \leqslant 10-10^{-k} \quad \forall k \in \mathbb{X} \\
& x_{0} \leqslant 10-1=9 \\
& x_{1} \leqslant 10-10^{-1}=9.9
\end{array}
$$

$$
x_{c} \leqslant \underbrace{10-10^{-k}}_{\leqslant 10} \forall k
$$

The sequere is boudled ahose by 10
The x_{n} 's conucse to some hurit.
A series: $\sum_{n=1}^{\infty} a_{n}$ $o_{n} \in \mathbb{R}$

Portial sums: $s_{k}=\sum_{n=1}^{k} a_{n}$

$$
\begin{aligned}
& s_{1}=a_{1} \\
& s_{2}=a_{1}+a_{2} \\
& s_{3}=a_{1}+a_{2}+a_{3} \\
& s_{4}=a_{1}+a_{2}+a_{3}+a_{4}=\sum_{n=1}^{4} a_{n}
\end{aligned}
$$

We say a series converges if its partial sans covege. Otherwise we say it diereses.

$$
\begin{array}{ll}
\text { E.g. } \sum_{n=1}^{\infty} \frac{1}{n^{2}} & \sum_{k=1}^{\infty} a_{k} \\
{\left[\begin{array}{ll}
s_{1}=1 & \Rightarrow a_{k} \geqslant 0 \\
s_{2}=1+\frac{1}{4}, & \\
s_{3}=1+\frac{1}{4}+\frac{1}{9} &
\end{array}\right.}
\end{array}
$$

$$
\begin{aligned}
\left(\frac{1}{n^{2}}\right. & =\frac{1}{n(n-1)} \quad n \geqslant 2 \\
& =\frac{1}{n-1}-\frac{1}{n} \quad \frac{n-(n-1)}{n(n-1)}=\frac{1}{n(n-1)}
\end{aligned}
$$

$$
\begin{gathered}
\sum_{k=1}^{\infty} \frac{1}{n^{2}} \\
1+\frac{1}{2^{2}} \leqslant 1+\left(1-\frac{1}{2}\right) \leq 2-\frac{1}{2} \\
1+\frac{1}{2^{2}}+\frac{1}{3^{2}} \leqslant 1+\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right) \leq 2-\frac{1}{3} \\
1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{4^{2}} \leq 1+\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right) \\
\leqslant 2-\frac{1}{4} \\
s_{n} \leqslant 2-\frac{1}{n} \forall n \quad s_{n} \leqslant 2 \text { 甘n. }
\end{gathered}
$$

$$
\begin{aligned}
& S_{n} \rightarrow \pi^{2} / 6 \\
& \sum_{n=1}^{\infty} \frac{1}{n} \quad[\text { Harmonor series }] \\
& \begin{array}{ll|cc}
s_{10} & 2.92 & s_{500} & 6.79 \\
s_{20} & 3.59 & S_{1000} & 7.49 \\
s_{50} & 4.4992 & \$_{10000} & 9.78 \\
s_{100} & 5.19 & S_{100000} & 12 \ldots \\
s_{200} & 5.88 & &
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
&\langle 1+\frac{1}{2}+\frac{1}{2}+\frac{1}{4}+\underbrace{\sqrt{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}}_{\geqslant \frac{1}{4}}+\underbrace{\sqrt{9} \cdots+\frac{1}{15}+\frac{1}{16}}_{\geqslant \frac{1}{8}} \\
& \geqslant \frac{1}{16} \\
& \geqslant \frac{1}{2} \geqslant \frac{8}{2} \geqslant \frac{1}{2}
\end{aligned}
$$

This series does at converse. The partial suns ae not bounded

$$
S_{2^{k}} \geqslant \frac{k}{2} \quad \begin{aligned}
& \forall k \in \mathbb{N} \\
& \text { of is by induction }
\end{aligned}
$$

