Then for all $n \in \mathbb{N}, \quad \frac{1}{\left|b_{n}\right|} \leqslant M$.

Prop: Sappose $b_{n} \neq 0 \quad \forall n \in \mathbb{N}$, and

$$
b_{n} \rightarrow b \neq 0 \text {. Then } 1 / b_{1} \rightarrow 1 / 6 \text {. }
$$

Pf. Let $\mu>0$ be a bour such that $\left|1 / b_{n}\right| \leq M$ for all n; this bound exalts because of the previous l emmer.

Let $\varepsilon>0$. [Job: Find an N that works.] Since $b_{n} \rightarrow b$ there exists $N \in \mathbb{N}$ such that $\quad\left|b_{n}-b\right|<\frac{\varepsilon|b|}{M} M$ for all $n \geqslant N_{0}$ Then, if $n \geqslant N$,

$$
\begin{aligned}
\left|\frac{1}{b}-\frac{1}{b_{n}}\right| & =\frac{\left|b_{n}-b\right|}{|b|\left|b_{n}\right|}=\left|b_{n}-b\right| \cdot \frac{1}{|b|} \cdot \frac{1}{\left|b_{n}\right|} \\
& \leqslant\left|b_{n}-b\right| \frac{1}{|b|} \cdot M \\
& <\varepsilon \frac{|b|}{M} \cdot \frac{M}{|b|}=\varepsilon .
\end{aligned}
$$

$$
a_{n} \rightarrow a \quad b_{n} \rightarrow b
$$

i) $a_{n} t_{b_{n}} \rightarrow a+b$
ii) $a_{n} b_{n} \rightarrow a b$

$$
i: i) \quad 1 / b_{n} \rightarrow 1 / b \quad\left(\begin{array}{l}
b \neq 0 \\
\left.b_{n} \neq 0 \quad \forall n\right)
\end{array}\right.
$$

[Exercise: If $b \neq 0$ than there is \mathbb{N} so if $n \geqslant N, \quad b_{n} \neq 0$.]
Cor: iv) can $\rightarrow c a \quad \forall c \in \mathbb{R}$. $b_{n}=c \quad \forall \eta$
v) $a_{n}-b_{n} \rightarrow a-b$
vi) $\frac{a_{1}}{b_{n}} \rightarrow \frac{a}{b} \quad\binom{b \neq 0}{b_{1} \neq 0}$

Limits and Order:

$$
\begin{gathered}
a_{n} \geqslant 0 \\
a_{n} \rightarrow L \geqslant 0 \\
a_{n}>0 \\
a_{n} \rightarrow L \geqslant 0 \\
a_{n}=\frac{1}{a} \quad a_{n} \rightarrow 0 \quad a_{n}>0
\end{gathered}
$$

Prop: Suppose $a_{1} \rightarrow L$ and $a_{1} \geqslant 0$ for all n. Then $L \geqslant 0$.

Pf: Suppose to the contray that $L<0$. Pack $N \in \mathbb{N}$ so that if $n \geqslant N, \sigma_{n} \geqslant 0$

$$
\left|a_{n}-L\right|<-L .^{[\varepsilon>0]} \quad a_{n}-L<0
$$

Is ponticular $\left|a_{N}-L\right|<-L$ and

$$
2 L<a_{N}<0 .
$$

$$
\left[\begin{array}{cc}
|a-b|<c & b-c<a<b+c \\
|a|<c & -c<a<c
\end{array}\right]
$$

Thus $a_{N}<0$. But $a_{N} \geqslant 0$, a conteudiction

Cons If $a_{n} \rightarrow a, b_{n} \rightarrow b$ and if $a_{1} \geqslant b_{1}$ for all n ten $a \geqslant b$.

Sketch:

$$
\begin{aligned}
& a_{n}-b_{n} \geqslant 0 \\
& a_{n}-b_{n} \rightarrow a-b \\
& \Rightarrow a-b \geqslant 0 \Rightarrow a \geqslant b .
\end{aligned}
$$

Cor: If $a_{n} \geqslant c$ for all if $a_{n} \rightarrow a$ then $a \geqslant c$.

Exercise.

Deakns with sequerce convegace with krauing ulat the linit is.

$$
\begin{aligned}
& x_{1}=3 \\
& x_{2}=3.1 \\
& x_{3}=3.14 \\
& x_{4}=3.141
\end{aligned}
$$

Montone sequerces.
Def: A sequerce is nonotone increasing if $a_{n+1} \geqslant a_{n}$ for all n. $a_{1}=5 \quad \forall n$ is nonutone in ireaging.
$a_{n}=n \quad$ Monotanc increasily.
Does not converge.

Prop: Suppose (0_{n}) is a monotone increasing sequere and there exists $M \in \mathbb{R}$ such that $a_{n} \leq M$ for all n. (We call M an upper baud for the sequence)
Than $\lim _{n \rightarrow \infty} a_{n}=\sup \left\{a_{n}: n \in \mathbb{N}\right\}$.

$$
\rightarrow[A O C: D A \neq \varnothing \text { sandal }]
$$

Pf: Let $A=\left\{a_{n}: n \in \mathbb{N}\right\}$. Oloserve
$A \neq \phi$ sure $a_{1} \in A$. The set
A admits M us an upper booed. Here, by the $A_{0} C, A$ hus a supreme, S. We claim $a_{n} \rightarrow S$.
Let $\varepsilon>0$. [Job: fund an N that works:

$$
\left.\left|a_{1}-s\right|<\varepsilon \text { for } n \geqslant N\right] \text {. }
$$

Since $\delta-\varepsilon<s, s-\varepsilon$ i not an upper bond for A. Hence thee exists a, $\in A$ such that $s-\varepsilon<a_{N}$.

Now if $n \geqslant N$ Than $a_{N+2} \geqslant a_{V+1} \geqslant a_{N}$

$$
s-\varepsilon<a_{N} \leqslant a_{n} \leqslant s<s+\varepsilon .
$$

That is, if $n \geqslant N, \quad\left|a_{n}-s\right|<\varepsilon$.

