Thin R is uncoontable. [IRis infuncte, but not countably infuncte] > ASB, A is infinite => Bis infinite > There does not exist f: IN - IR that is a bijection Pf: Suppose to the contrary that fill-TR IS a bijection. For brevily let as write xk = f(k). Defne Jo= [0, 1].

One of the two intouchs [0, 43] and [213,1] does not contain X1. funt price I, to be one of 0 1/3 2 1 these intervals. Similarly we can find a closed suberval of Ily Iz, that does not contain the

Continuers this process we can find rested closed intervals Ik such that xk& Ik for all kEIN. By the Nested Intend Property there exists x e Ik. We know that x = x, for some n. By construction Xn & In and hence $x_1 \notin \bigcap_{k=1}^{\infty} I_k$. Thut is $x \notin \bigcap_{k=1}^{\infty} I_k$. X This is a contradiction

Alternative Stratesy	$T = \frac{2}{3} \times eR: \sqrt{2} CZ^{3}$
decimal expansions	$\hat{T} = z_q \in Q : q^2 < 2^3$
[0,1] is not uncontable.	À would have a sup. in the
uncourtable.	
	$d_1 d_2 d_3 d_4 \cdots$
· · · · · · · · · · · · · · · · · · ·	dk 620, 12, -, 93
$x = \frac{d}{10}$	$+\frac{d_2}{100}+\frac{d_3}{1000}+\frac{d_4}{104}+$
$x = \frac{1}{2}$ $x = 0.5$ 0.4	0000 99999-

0.9999...=1[0, 1]prok the all 9's if two expansions O.d. diz dis $x_2 = 0. d_{21} (d_{22}) d_{23}$ $x_3 = 0. d_{31} d_{52} (d_{35})$ x_4 $d_{k} = \int 5 = f d_{kk} = 7$ $(x \neq 0. d_1 d_2 d_3 d_4$ 27 otherwise. X + XE S's 7's because de F dek

Sequences:
×1,1×2, ×3,1×4,1
Def: A (real-valued) sequence is a function $f: N \rightarrow R$.
$x_1 x(0) x_k x(k)$
sequences have a notion of first element and a notion of next.
x -> Sirst element Xeri is next element after xe.

ZZK = ZaeZ: azk3 20,1,2, 220 X X K K=(Notation XE Z K

Conversere. What does it mean to say $x_{k} \rightarrow 2.$ "Xk's get closer and closer to Z"

Def: le say à sequence (xk) conveges to a lanit LER if for every EZO there exists NEIN so that if n >N then |L-Xn < E. If (xk) converges to L we write lin XK=L on Samply XK->L. A sequence diverses & it does not converge to any real number.

 .	· · · · · ·
 .	· · · · · ·

E.g. $X_n = 1$ Claim $\lim_{n \to \infty} \frac{1}{n} = 0.$ Pf: Let E70. Pick NEN such that N < E. Then of NZN $|0-x_{n}| = |0-1| = 1 \le \frac{1}{N} \le \frac{1}{N}$