Than: [Alternatiny Series Test]

$$
a_{n}=\frac{1}{n}
$$

Sappose $\left(a_{n}\right)$ is a monotore decreasug sequere thut converes to 0 . Then $a_{n+1} \leq a_{n}$

$$
\sum_{n=1}^{\infty}(-1)^{n+1} a_{n}
$$

convegos.

$$
\left(a_{n}\right)
$$

$$
\begin{aligned}
& a_{n}=1 \forall_{n} \\
& a_{n}=1+\frac{1}{n}
\end{aligned}
$$

$$
\begin{aligned}
& a_{n+1} \leq a_{n} \\
& \frac{1}{n+1} \leq \frac{1}{n} \\
& n \leq n+1
\end{aligned}
$$

Let $\left(s_{k}\right)$ be the sequence of partial sums of the PF: First, observe since $\left(a_{n}\right)$ is decreasing for all $j \in \mathbb{N}$

$$
\begin{aligned}
s_{z_{j}+1} & =s_{z_{j-1}}-a_{2 j}+a_{2 j+1} \\
& \leqslant s_{2_{j}-1}
\end{aligned}
$$

and hence $\left(s_{2_{j-1}}\right)$ is monotone decreasing.
Similarly for all $j \in \mathbb{N}$

$$
\begin{aligned}
S_{2 j+2} & =S_{2 j}+a_{2 j+1}-a_{2 j+2} \\
& \geqslant S_{2 j}
\end{aligned}
$$

So $\left(s_{2 j}\right)$ is mondore increasing.

Now, if $J \in \mathbb{N}$,

$$
s_{1} \geqslant s_{2 j+1}=s_{2 j}+a_{2 j+1} \geqslant s_{2 j}
$$

So s, is an uuper boand for $\left(s_{2 j}\right)$.
Smilarly $j \in \mathbb{N}$

$$
\begin{aligned}
& S_{2} \leqslant S_{2 j}=S_{2 j+1}-a_{2 j+1} \leqslant s_{2 j+1} \\
& S_{2} \leqslant S_{2 j}=S_{2 j-1}-a_{2 j} \leqslant S_{2 j-1}
\end{aligned}
$$

anl here S_{2} is a laver band for $\left(s_{2 j-1}\right)$.
Hence (S_{25}) is increwion ad kouled abowe,

So it conveses to a luit L.
Siailuly, $\left(s_{z j-1}\right)$ conveges to a linit L^{\prime}.
Takns the lunt of the equation

$$
S_{2 j}=S_{23-1}-a_{2 j}
$$

we conclude

$$
L=L^{\prime}-0
$$

Since $\left(s_{k}\right)$ is the shuffled sequace of $\left(s_{2 j-1}\right)$ ad $\left(s_{2 j}\right)$, problem 2.3 .5
implies $s_{k} \rightarrow L$.

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \frac{1}{n} \text { vs } \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \\
& S=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\frac{1}{7}-\frac{1}{8}+\cdots \\
& \frac{S}{2}=\frac{1}{2}-\frac{1}{4}+\frac{1}{6}-\frac{1}{8}+\frac{1}{10} \\
&=0+\frac{1}{2}+0-\frac{1}{4}+0+\frac{1}{6}+0-\frac{1}{8}+0
\end{aligned}
$$

$$
\begin{aligned}
& L_{\frac{35}{2}+\frac{s}{2}=}^{1+0+\frac{1}{3}-\frac{1}{2}+\frac{1}{5}+0+\frac{1}{7}-\frac{1}{4}-\cdots}+\left[\frac{3 s}{2}=s ? ? ?\right. \\
& \rightarrow \neq s \quad(!)
\end{aligned}
$$

Def: A series $\sum_{k=1}^{\infty} a_{k}$ is absolutely canc. if $\sum_{k=1}^{\infty}\left|a_{k}\right|$ is convergent. A convergent series that is not absolutely convergent is called conditionally convergent $\left[\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{n}\right) \rightarrow$ conditionally con
$\sum a_{n}$, conversent.

$$
\begin{aligned}
& a_{1}^{+}=\max \left(a_{1}, 0\right)=\left\{\begin{array}{l}
a_{1} \quad \text { if } a_{1} \geqslant 0 \\
0 \\
\text { othewiso }
\end{array}\right. \\
& a_{1}^{-}=\max \left(-a_{1}, 0\right) \\
& 0, a_{1}^{-} \geqslant 0
\end{aligned}
$$

$$
a_{n}^{4} \geqslant 0, \quad a_{n}^{-} \geqslant 0
$$

$a_{n}=a_{n}^{+}-a_{n}^{-}$If $\sum\left|a_{n}\right|$ conveges

$$
\begin{aligned}
\left|a_{1}\right|=a_{n}^{+}+a_{1}^{-} \text {so does } o_{1}^{+} \quad\left(\begin{array}{c}
\text { comp. } \\
\text { Lest. })
\end{array}\right. & \sum a_{1}^{-}
\end{aligned}
$$

$$
\begin{aligned}
\sum_{n=1}^{\infty} a_{n}=\sum_{n=1}^{\infty} a_{1}^{+}-a_{1}^{-}= & \sum_{n=1}^{\infty} a_{n}^{+}-\sum_{n=1}^{\infty} a_{n}^{-} \\
& \left|a_{n}\right|=a_{1}^{\alpha}+0_{n}^{-}
\end{aligned}
$$

Sappose \sum an converes and $\sum a_{n}^{+}$conveges.

$$
\begin{aligned}
a_{1}^{+}-a_{1}^{-} & =a_{n} \\
a_{1}^{-} & =a_{1}^{+}-a_{1} \\
\Sigma a_{1}^{-} & =\sum a_{n}^{+}-a_{1}=\sum a_{1}^{+}-\sum a_{n}
\end{aligned}
$$

$\sum a_{n}^{+}+a_{n}^{-}$convares if $\sum a_{n}$ converes ond if one of $\sum a_{n}^{+}$or $\sum a_{n}^{-}$ converges, wahich case they both do.

Conditimally convesent:
$\rightarrow \sum_{a_{1}}$ conveses
but $\int\left[\begin{array}{ll}\sum a_{n}^{+} & \text {diverge } \\ \sum a_{n}^{-} & \text {divese. }\end{array}\right.$

Absolutely cowergent $\sum a_{i}^{+}$converses \sum in convege.

$$
\begin{aligned}
\sum a_{n}= & \sum a_{n}^{+}-\sum a_{n}^{-} \quad \sum \frac{(-1)^{n+}}{n} \\
& \infty-\infty
\end{aligned}
$$

