Compact set: closed + bounded. $A \subseteq [-M, M]$ A GR. bounded for some M70 a) contains its limit points closed set. b) every convergent sequence in A conveyes to almit Mt. c) complement 13 open Ve(x)

A= (0, [] is not closed 0 is a limit point of A that is not on A. Xn> O&A $X_n = L$ Boteano-Weierstrugs property Every sequerce in A hus a subsequere that convoges to a limit in A.

Compact sets have the B-W property. A, compact (Xn) in A. A 13 conput >> bounded =7 A E [-M,M] Sor Some M $\gg |J_n| \leq M$ for all n. By BU there is a subsequence

Xnk-7L for some LER. Suce A is closed, LEA. If A is not bounded => A does not luna B-W property. (XAK > UK > K $|x_{1}| > 1$

If A is not closed => A loes not have B-W property, c, lanit pour of A, c&A. (x_n) $x_n \in A$ $x_n \to C$ Xn; >> C &A $Y_{n_j} \rightarrow a \in A?$ Upshot: has B-W property >> is closed + bounded

i.e. compacti The continuous mase of a conpact set 3 comput. $f: A \rightarrow \mathbb{R}$ $f(A) = \sum f(x): x \in A$ $f: R^+ = \Xi_X: X > 03$ $f(x) = \overline{X}$ $f(R^+) = ?$

 $f(R^{\dagger})=7$ $f((o), \overline{1})$ closed + bounded $f:(0,1] \rightarrow R$ $f(A) = [1,\infty)$ $f(x) = \frac{1}{2}$ $A = [z, \infty)$ $f(x) = x^{2}$ $f(A) = \left[4, \infty \right)$

		· · · · · · · · ·	· · · · ·
	2
$\left(-\frac{1}{2}\right)$. .	· · · · · · · · ·	· · · · ·
$f(x) = s_{ih}(x)$ A = R	<mark>.</mark>			· · · · ·

If f: A R is continuous ad if A is conpact then f(A) is also compact. PS: Let (Yn) be a sequence in f(A). Then for all new there exists in GA with f(xn)= rn.

Since A is compact, (xn) hus a Sub sequence (xnx) conversing to a lamit $x \in A$. Observe $f(x) \in f(A)$. By contar vity f(xx) > f(x) $Y_{n_{k}} \longrightarrow f(x) \in f(A),$

and \$9 On tw: If KER is compact other Here exists MEK such that a SM Sor all a CK. man man If K is compact then it has a maximum element

If K is conjust of then its suprementies and to SupKEK. Extreme Value Theorem: Soppose f: A > R is continuous where A 15 compart. Then there exists XMEA such that $f(x) \leq f(x_m)$ for all $x \in A$ ad to

a server a server a server a server a and a second Pf: Since A is compact and since f is continuous f(A) is compact. By the HW problem Mere exists MEF(A) such that Mizy for all YEF(A). Since MGF(A) the exists xyEA with $f(x_m) = M$. But then if $x \in A_j$ $f(x) \in f(A)$ and $f(x) \leq M = f(x_m) \cdot 1$

f(x)g(x)= g(x) Sg(xm) H x EA with -fa) S-fan) HxEA flx) Z f(xm) HxEA. f(e)=

Uniform Confinuity f:A>R Continuous Hach, fis continues of a HaGA, HEZO the exists 870 so if xEA and 1x-a (5 => [f(x)-f(a)]LE. E S depends or holh E and a **. .** .