a) Limit pount of a set
b) $\lim _{x \rightarrow c} f(x)=L$
c) f is conturuous at a.
a) $\begin{aligned} & A \in \mathbb{R} \\ & \subset \in \mathbb{R} \\ & \subset \text { is a limet rocit of } A\end{aligned}$

For all $\varepsilon>0$

$$
\left.V_{\varepsilon}(c) \cap(A\} \varepsilon\right) \neq \phi .
$$

Every ε-nithd of c contaus a podet in A that is not c.

$$
\lim _{x \rightarrow c} f(x)=L \quad f: A \rightarrow \mathbb{R}
$$

C is a lust point of A
For all $\varepsilon>0$ there exists $s>0$ such that if $0<|x-c|<\delta$ then $|f(x)-L|<\varepsilon$.

$f: A \rightarrow \mathbb{R}$
a CA
f is continues at $a \in A$
" $\lim _{x \rightarrow a} f(x)=f(a)$ '

For all $\varepsilon>0$ there exits $\delta>0$ such that if $\quad|x-a|<\delta$ than $|f(x)-f(a)|<\varepsilon$.

Sequental Character rations

1) c is a lunct pount of A
there is a scqueree (a_{1}) in $A \backslash\{c\}$ such tint $\quad a_{n} \rightarrow c$.

Is O a lamit point of \mathbb{E} ?

Thar exists a sequence (an) or $\mathbb{Z} \backslash\{0\}$ such that $a_{n} \rightarrow 0$.

For all sequences $\left(a_{n}\right)$ in $\left.\mathbb{Z} \backslash 0\right\}$,

$$
\sigma_{n} \nrightarrow o_{0}
$$

Consider a sequence (on) in $\mathbb{Z} \backslash\{0\}$. Then for all $n, \quad\left|a_{n}-0\right|=\left|a_{n}\right| \geqslant 1$. But then a_{n} ts.
2) $f: A \rightarrow \mathbb{R}$
c is a init point of A

$$
\lim _{x \rightarrow c} f(x)=C
$$

if and only it for all sequins (ai) in $A \backslash\{c\}$ with $a_{n} \rightarrow c, f\left(o_{n}\right) \rightarrow L_{0}$

$$
f(x)= \begin{cases}0 & x=0 \\ 1 & \text { othouise }\end{cases}
$$

$$
\begin{equation*}
\lim _{x \rightarrow 0} f(x)=1 \tag{n}
\end{equation*}
$$

Need to show that dor all sequaces in $\mathbb{R} \backslash\{0\}$ with $a_{n} \rightarrow 0, \quad f\left(a_{n}\right) \rightarrow 1$.

Suppose (an) is a sequace in $\mathbb{R} \backslash\{0\}$ such that $a_{n} \rightarrow 0 . \quad\left[J o b s\right.$ shaw $f\left(a_{n}\right) \rightarrow 1$] Since each $a_{n} \neq 0, f\left(a_{n}\right)=1$ for all n and therefore $f\left(a_{n}\right) \rightarrow 1$.

Contumely:

$$
\begin{aligned}
& f: A \rightarrow R \\
& a \in A \\
& f \text { is continuous } A \text { a }
\end{aligned}
$$

if and orly of for ill sequeres (an) ut with an $_{n} \rightarrow \alpha, f\left(a_{n}\right) \rightarrow f(a)$.

$$
f(x)= \begin{cases}1 & \text { if } x \in \mathbb{Q} \\ 0 & \text { if } x \notin \mathbb{Q}\end{cases}
$$

Is this function continuous et $x=0$?

$$
\begin{aligned}
& a_{n}=\frac{\pi}{n} \quad a_{n} \rightarrow 0 \\
& \quad \begin{array}{l}
f \text { is } \\
\text { not contrives } \\
\text { at } 0 .
\end{array}
\end{aligned} \quad\left[\begin{array}{l}
f\left(a_{n}\right)=0 \quad \forall n . \\
f\left(a_{n}\right) \rightarrow 0 \\
f(0)=1
\end{array}\right.
$$

If this fucctran had a lunar at 0 , it would hue to be 1 .

$$
\begin{array}{ll}
b_{n}=\frac{1}{n} \quad & f\left(b_{n}\right)=1 \quad \forall n \\
& f\left(b_{n}\right) \rightarrow 1
\end{array}
$$

If the launch existed, it would be l.
Have $\lim _{x \rightarrow 0} f(x)$ does not exist,

- I clawn f is continaous of $x=0$.

Using sequacos I reed to shaw:
We reed to shaw that if on is a sauce with $a_{n} \rightarrow 0, f\left(\sigma_{1}\right) \rightarrow f(0)=0$.

Let $\left(0_{n}\right)$ be a sequice in \mathbb{R} with $a_{n} \rightarrow 0$. Then for all n,

$$
0 \leqslant\left|f\left(a_{n}\right)\right| \leqslant\left|a_{n}\right|
$$

Sane $a_{n} \rightarrow 0,\left|a_{n}\right| \rightarrow 0$ so by the square than, $\left|f\left(a_{n}\right)\right| \rightarrow 0_{0}$

Bat than, by HW, $f\left(a_{n}\right) \rightarrow 0$ also.

