a) limit pourt of a set lm f(c) =メシレ contanuous dt C_{1}) A_{1} A_{2} A_{3} A_{5} For all E>0 a) $A \in \mathbb{R}$ $V_{\varepsilon}(c) \Lambda(A|2\overline{c}) \neq \phi$ ceR c is a limit pour of A Every E-robbd of c $-\frac{1}{1}$ contailes a point in A Muit is not co

lm f(x) = $f: A \rightarrow \mathbb{R}$ メークレ c is a limit point of A For all ESO there exists \$70 such that if 04 | x-c | <8 then | f(x)-L | <E. 617L

+; A-> R acA 13 continuous at a EA $\lim_{x \to \infty} f(x) = f(a)''$ For all E 20 there exists 620 such thit 1x-a/25 the S(x)-fa) 2E.

Sequential Character intions 1) c is a lund pourt of 4 Ę thee is a sequere (a) in Alzez such that an > c. Is 0 a louit point of Z? _____

There exists a sequence (a_n) of $\mathbb{Z} \setminus \frac{203}{203}$ such that $a_n \rightarrow 0$.
For all sequences (an) in $\mathbb{Z}\setminus 33$, 6n+70
Consider a sequence (o_n) in $\mathbb{Z}\setminus\{20\}$. Then for all $ n a_n - 0 = a_n \ge $
But $M_{eq} a_{1} \neq 0$.

 \mathcal{L} f:A>R c is a lunit podrt of A $\lim_{x \to \infty} S(x) = C$ if and only if for all sequenes (a) in A/203 with an > c, f(m) > L. (x) = 20 x =othorwise

 $\lim_{x \to 0} f(x) =$ Need to show that for all sequences in $R_{202} with a_n > 0, f(o_n) > 1.$ Suppose (an) is a sequere in R 1203 such that an >0. EJob: show f(an) >1] Since each on $\neq 0$, $f(a_n) = 1$ for all n and therefore f(an) > lo

Confirmity: S: A > R aEA f is continuous of a if and only of for all sequences (an) in t with $a_n \rightarrow a_r$, $f(a_n) \rightarrow f(a)$. f(x) = 21 if $x \in \mathbb{Q}$. ZOGEXEQ

	$ \cdot \cdot$
Jos this Suction continue	$ses A \chi = 0.7$
$a_n = \frac{\pi}{n}$ $a_n \rightarrow 0$ f_{13}	$f(a_n) = 0 \forall n.$ $f(a_n) \rightarrow 0$
not continues at O,	$\int_{-\infty}^{\infty} f(\sigma) = 1$

If this suction had a lunit at ? if would have to be 1.
$6_n = \frac{1}{n} \qquad f(b_n) = 1 \qquad \text{fn} \qquad f(b_n) = 1$
If the laurt existed, it would be to
Have long fly does of exist.

$\int \int $	$x \in \mathbb{Q}$	
		 · · · · · · · ·
J. clum	is continuous at $y = 0$.	 · · · · · · · · · <li li="" ·="" ·<=""> <li li="" ·="" ·<=""> · · · · · · <

Using sequences I need to show: We reed to shaw that if on is a seque with $a_n \rightarrow 0$, $f(a_n) \rightarrow f(o) = 0$. Let (a) be a seque in R with an >0. Then for all n, $0 \leq |f(a_n)| \leq |a_n|$ Since an > 0, |an > 0 50 by the Squeeze thus, If (an) -> 0.

Bat	Than,	67	$H W_{j}$	$f(a_n) >$	0 also.
		· · · · · ·	· · · · · · · ·		
		· · · · · ·			
		· · · · · ·			
		· · · · · ·			
· · · · · · · ·		· · · · · ·	· · · · · · · ·		
		· · · · · ·			