Fermat Theorem:
Suppose $f:[a, b] \rightarrow \mathbb{R}$ attains a maximum at $c \in(a, b)$ and f is differentiable at ci Then $f^{\prime}(c)=0$.

$$
\begin{array}{rlrl}
f^{\prime}(c) & =\lim _{x \rightarrow c} \frac{f(c)-f(x)}{c-x} & & \\
& =\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c} & & f(c)-f\left(x_{n}\right) \geqslant 0 \\
x_{1} \rightarrow c x_{n} \neq c<x_{n}
\end{array}
$$

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{\frac{f(c)-f\left(x_{n}\right)}{c-x_{1}}=}{}=\lim _{x \rightarrow \infty} \frac{f(c)-f(c)}{c-x} \\
&\left(L_{0} \leqslant 0\right. \\
& \Rightarrow \lim _{n \rightarrow \infty} \frac{f(c)-f\left(x_{n}\right)}{c-x_{n}} \leqslant 0 \quad f^{\prime}(c) \leqslant 0 \\
& \longrightarrow f^{\prime}(c) \geqslant 0 \\
& \longrightarrow f^{\prime}(c)=0
\end{aligned}
$$

Pf: Since $c \in(a, b)$ there exists a sequence $\left(y_{n}\right)$ in $[a, b]$ with $c<x_{n}$ for all n ad $x_{n} \rightarrow C_{0}$. Observe that sine $f(c) \geqslant f\left(x_{1}\right)$ for all)

$$
\frac{f(c)-f\left(x_{n}\right)}{c-x_{n}} \leqslant 0
$$

for all n.
But then

$$
\begin{aligned}
f^{\prime}(c)=\lim _{x \rightarrow c} \frac{f(c)-f(x)}{c-x} & =\lim _{n \rightarrow \infty} \frac{f(c)-f\left(x_{n}\right)}{c-x} \\
& \leqslant 0
\end{aligned}
$$

by the Limat onder theoran A sanilus proof usily a sequere $z_{n} \rightarrow C$ with $z_{n}<C$ for all n shicws $f^{\prime}(c) \geqslant 0$ as well and hence $f^{\prime}(c)=0$.

What if f achieres a nax it a aqd is diff at a ?

$$
f^{\prime}(a) \leqslant 0
$$

$f^{\prime}(6) \geqslant 0$

Con (Role's Lemma)
Suppose f is continuous on $[a, b]$ and differentiable on (a, b) and
$f(a)=f(b)$. Then thee exists $c \in(a, b)$ such that $f^{\prime}(c)=0$.

Pf: B_{y} the Extreme Value Theorem, the faction achieves a muximan and a minimum value somewhere. If one of these is achieund at $c \in(a, b)$ Then Fermat's theorem implies $f^{\prime}(c)=0$. If They are bootle achieind at the cud points Then, since $f(a)=f(b)$, the function is constant and $f^{\prime}(c)=0$ for all $c \in(a, b)$.

Cor (Mean Value Thoron)
Suppose f is continuous on $[u, b]$ and differentiable on (a, b). Then there exists a $c \in(a, b)$ such that

$$
\begin{aligned}
g(x) & =f(x)-\left[f(a) \frac{x-b}{a-b}+f(b) \frac{x-a}{b-a}\right] \\
g(a) & =f(a)-\left[f(a) \frac{a-b}{a-b}+f(b) \frac{a-a}{b-a}\right] \\
& =0 \\
g(b) & =f(b)-\left[f(a) \frac{b-b}{a-b}+f(b) \frac{b-a}{b-a}\right] \\
& =0
\end{aligned}
$$

$$
\begin{aligned}
& c \in(a, b) \quad g^{\prime}(c)=0 \\
& g(x)=f(x)-\left[f(a) \frac{x-b}{a-b}+f(b) \frac{x-a}{b-a}\right] \\
& g^{\prime}(x)=f^{\prime}(x)-\left[-\frac{f(a)}{b-a}+\frac{f(b)}{b-a}\right]
\end{aligned}
$$

$$
\begin{aligned}
&=f^{\prime}(x)-\left[\frac{f(b)-f(a)}{b-a}\right] \\
& g^{\prime}(c)=0 \Leftrightarrow f^{\prime}(c)-\left[\frac{f(b)-f(a)}{b-a}\right]=0 \\
& \Leftrightarrow f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
\end{aligned}
$$

Suppose f is contincaus on $[a, b]$ and diff on (a, b) and $f^{\prime}(x)=0$ for all $x \in(a, b)$.

Then f is constant.

Mem value thewem: $\frac{f(x)-f(a)}{x-a}=f^{\prime}(c)=0$
for Some C where $a<c<x$.

$$
\begin{aligned}
& \frac{f(x)-f(a)}{x-a}=0 \\
& \Rightarrow f(x)=f(a)
\end{aligned}
$$

$f:[a, b] \rightarrow \mathbb{R}$, cts.
f is diff (a, b)
$f^{\prime}(x)>_{\uparrow} 0$ for all $x \in(a, b)$.

$$
\begin{gathered}
\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}=f^{\prime}(c)>0 \\
f\left(x_{2}\right)-f\left(x_{1}\right)>0 \\
f\left(x_{2}\right)>f\left(x_{1}\right) \\
f^{\prime}(x)=g^{\prime}(x) \text { on }[a, b] \\
(f-g)^{\prime}(x)=0 \quad \text { on }[a, b] \\
f-g=c \quad f=g+c
\end{gathered}
$$

