$IVT: Suppose f: [a,b] \rightarrow R is continuous ad$ LER with either SGI<L<f(6) or f(a)>L>f(b). Then the exists $c \in (a, b)$ such that f(c) = L

f(a) < (f(a) - L < OL < f(b) 02f(b)-L 04 g(b) g(c)=0 f(c)-L=0 => f(c)=L

f(x) g(u) = -f(x)S(a) > L> f(b) -f(a) < -L < -f(b)g(a) <- L < g(b) g(c) = -Lf(c)=L -/-) =

		$f(x) = x^2$
	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
$f(\circ) = 0$	f(10) = 100	· · · · · · · · · · · · ·
There exists c	14 (0,10)	

such Not	$c^{z} = L$		· ·
2	$c^2 = Z$
	\sim
Dermatives: f(c)			
(c, f(c))			
	a c x	· · · · · · · · · · · · · · · · · · ·	

 $f'(c) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ 1 1/152 . . . f(x) - f(c)f(x)-f(c) K-Cxac X-C Def: Sappose AER, f: A-R ad that c is a limit point of A. We say f is differentiable at c if lim f(x)-f() exists, in which cuse we write f'(c) for the limiting value.

. Suprose f is differentiable at c. $\mu(x) = \int \frac{f(x) - f(c)}{x - c}$ X + C Define f'(c)X = C $\lim_{x \to c} \mu(x) = \lim_{x \to c} \frac{f(x) - f(c)}{x - x} = f'(c)$ Observe

 $= \mu(c)$ The Suctions M $\lim_{\chi \to \infty} \mu(\chi) = \mu(c)$ 13 continuers of M(4)= f(4)-fE) $(x \neq c)$ X-C $f(x) = f(c) + \mu(x)(x-c)$ $(x \neq c)$ $(\chi = c)$ If f is differentiable at c then the exists a chatchenger function

1 that is continuous at a such that $f(x) = f(c) + \mu(x)(x-c)$ and $\mu(c) = f'(c)$. $\mu(c) = M$ IF X is new c $\mu(x) \sim ling$ f(x) ~ f(c) + un (x-c)

There is a converse. Suppose B is continuous at c nd $f(x) = Y_0 + \beta(x)(x-c)$ I clamm f is differentiable at C and $\beta(c) = f'(c)$. $f(c) = Y_0 + O = Y_0$ $\frac{f(x)-f(c)}{x-c} = \frac{f(x)-y_0}{x-c} = \beta G$ X-C

 $\lim_{x \to c} \left(\frac{f(x) - f(c)}{x - c} \right) = \lim_{x \to c} \beta(x) = \beta(c)$ A faution f(x) is differentable at c If and only of the exists a function pe that is continuous at c and Sach Ilint $f(x) = f(c) + \mu(x)(x-c).$