Last class:

$$
F T C
$$

1) $\quad F^{\prime}(x)=f(x)$ on $[a, b]$

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

f Reamer int on $[a, b]$
2)

$$
\begin{aligned}
& \frac{d}{d x} \int_{a}^{x} f(\circledast) d \Theta=f(x) \\
& f \text { is contimes }
\end{aligned}
$$

1) If you wart to compute a defurte integml foud an antideriative
2) If yau wurt m antidervatue, you con make ane using defunte intesats

$$
F(x)=\int_{a}^{x} f(\Theta) d(\theta) \quad F^{\prime}(x)=f(x)
$$

$$
\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x
$$

Please read text concerning this.
Lemma: Suppose f is Remains integrable on $[a, b]$. Than there is a sequence of partitions P_{n} such that

$$
O\left(f, P_{n}\right) \rightarrow \int_{c}^{b} f \text { al } L\left(f, P_{1}\right) \rightarrow \int_{a}^{b} f .
$$

Conversely if f is bocould an $[95]$ and There exist partitions P_{n} such suit

$$
U\left(I, P_{1}\right) \rightarrow L \text { and } L\left(f, P_{1}\right) \rightarrow L
$$

for sone L than f is Riemaruintesuble on $[0, b]$ and $\int_{0}^{b} f=L$.

Sequenos of functions

$$
\begin{aligned}
& e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\cdots \\
& \sum_{k=0}^{\infty} \frac{x^{k}}{k!} \\
& e^{0.1}=\sum_{k=0}^{\infty} \frac{(0.1)^{k}}{k!} \quad e^{0,1}=\lim _{n \rightarrow \infty} s_{n} \\
& a_{k} \\
& s_{1}=\sum_{k=0}^{n} \frac{(0,1)^{k}}{k!}
\end{aligned}
$$

$$
\begin{aligned}
& p_{n}(x)=\sum_{k=0}^{n} \frac{x^{k}}{k!} \quad P_{4}(x) \\
& \lim _{n \rightarrow \infty} P_{n}=e_{x} \quad \rho_{4}^{\prime}(x) \\
& P_{4}(x)=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!} \\
& P_{\psi v}^{\prime}(x)=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!} \\
& L P_{3}(x)
\end{aligned}
$$

$$
\begin{aligned}
& \exp (x)=e^{x} \\
& \exp (x)=e^{x}=\exp (x) \\
& \exp (x)=\lim _{n \rightarrow \infty} P_{n}(x) \\
& \begin{aligned}
\frac{d}{d x} \exp (x) & =\frac{d}{d x} \lim _{n \rightarrow \infty} p_{n}(x)
\end{aligned}=\lim _{n \rightarrow \infty} \frac{d}{d x} p_{n}(x) \\
&=\lim _{n \rightarrow \infty} P_{n-1}(x) \\
&=\exp (x)
\end{aligned}
$$

$\lim _{h \rightarrow 0} \lim _{n \rightarrow \infty}$ us $\lim _{n \rightarrow \infty} \lim _{h \rightarrow 0}$

$$
\vartheta ?
$$

Def: Let $f_{n}: A \rightarrow \mathbb{R}$ be a sequace of factions. Suppose $f: A \rightarrow \mathbb{R}$.
We say $f_{n} \rightarrow f$ pointwise of for all $x \in A, \quad f_{n}(x) \rightarrow f(x)$.
e.g. $\quad f_{n}(x)=\sqrt{\frac{1}{n}+x^{2}}$

$$
\begin{aligned}
& f_{n}(0)=\sqrt{\frac{1}{n}} \rightarrow 0 \\
& f_{n}(3)=\sqrt{\frac{1}{n}+9} \rightarrow 3 \\
& f_{n}(-2) \rightarrow 2
\end{aligned}
$$

$f_{n} \rightarrow$ abs pontwise

$$
\begin{aligned}
& f_{n}(x)=\sqrt{\frac{1}{n}+x^{2}} \\
& f_{1}^{\prime}(x)=\frac{1}{2} \frac{1}{\sqrt{\frac{1}{n}+x^{2}}} \cdot 2 x \\
&=\frac{x}{\sqrt{\frac{1}{n}+x^{2}}} \\
& \\
& f_{n}^{\prime} \rightarrow a b_{\delta}^{\prime} \quad \frac{x}{|x|}=\left\{\begin{array}{l}
1 x>0 \\
-1 x<0
\end{array}\right. \\
& f_{n}^{\prime}(0)=0
\end{aligned}
$$

$$
\text { e.g } \begin{array}{ll}
& f_{1}(x)=x^{n} \text { on }[0,1] \\
& f_{1}(0)=0^{n} \rightarrow 0 \quad \frac{1}{2}, \frac{1}{4}, \frac{1}{8} \\
& f_{n}(1 / 2)=\left(\frac{1}{2}\right)^{n} \rightarrow 0
\end{array}
$$

$f_{1}(x) \rightarrow g(x)$ porat wise

$$
g(x)= \begin{cases}0 & x \neq 1 \\ 1 & x=1\end{cases}
$$

$f_{n}(x)=x^{n}$

The point arse limit of continuous functions need not be continuous.

The ponturse lint of diff factions need not he diff.

Suppose $f_{n} \rightarrow f$ pointucse.
Erich f_{1} B contain aus. How come f reel not be continuous?
f_{1} is cts at c.
want f is cts $d c$

$$
\begin{aligned}
|f(x)-f(c)| \leqslant \mid f(x) & -f_{n}(x) \mid \quad(x-c \mid<\delta \\
& +\left|f_{n}(x)-f_{n}(c)\right| \\
& +\left|f_{n}(c)-f(c)\right|
\end{aligned}
$$

Given $\varepsilon>0$ we cm fud N so

$$
\left|f_{v}(c)-f(c)\right|<\frac{\varepsilon}{3}
$$

Sine f_{N} is continues ot c we cm fad a $\delta>0$ so if $|x-c|<\delta$ then $\left|f_{N}(x)-f_{N}(c)\right|<\frac{\varepsilon}{3}$.

If $|x-c|<\delta$

$$
|f(x)-f(c)|<\left|f(x)-f_{N}(x)\right|+\frac{2 \varepsilon}{3}
$$

we have no grumatee that fer all x with $|x-c|<\delta, \quad\left|f(x)-f_{N}(x)\right|<\frac{\varepsilon}{3}$

Def: A sequare of functions $f_{n} \rightarrow f$ uniformly if for all $\varepsilon>0$ the ne exists N so that if $n \geqslant N$

$$
\left|f_{n}(x)-f(x)\right|<\varepsilon
$$

for all $x \in A, \quad\left(f_{n}, f: A \rightarrow \mathbb{R}\right)$

