Last Class. FT(, F'(x) = f(x) on [a, b] $\int^{b} f(x) dx = F(b) - F(a)$ f Rramann , ut on [a, 5] $\frac{d}{dx} \int_{a}^{x} f(0) d0 = f(x)$

1) If you want to complete a defaulte integral found on antidemative 2) If you want un ontiderwature you can make one using definite integrals $F(A) = \int_{x}^{x} f(\sigma) d\sigma \qquad F'(x) = f(x)$

 $\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx$ Place read text concerning this. Lama: Suprose fis Roman integrade on La,6] Then there is a sequence of partitions Pn such that $U(f, P_n) \longrightarrow \int_{a}^{b} f \quad ml \quad L(f, P_n) \longrightarrow \int_{a}^{b} f.$ Conversely of fis bounded on Eg. 5] and There exist partitions Pr such stut

$O(t, b') \rightarrow$	L and $L(f, P_n) =$	≈
for some L	Mar J is Riemonum	zzube
on Cc,6J and	$\int_{0}^{b} f = L.$. .
		· · · · · · · · · · · ·
. .		. .
.
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · ·

Sequences of functions $+ \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + \frac{x^{4}}{4!} + \frac{x^{4}}{2!} + \frac{x^{4}}{3!} + \frac{x^{4}}{4!} + \frac{$ XK = lim Su $\sum_{k=0}^{\infty} \frac{(0,1)^{k}}{k!}$ 1 (0)= 2 k1

$P_n(x) = \sum_{k=0}^{n} \frac{x^k}{k!}$	$P_4(\mathcal{L})$
· · · · · · · · · · · · · · · · · · ·	$ \begin{array}{c} \begin{array}{c} \\ \\ \\ \end{array} \end{array} \end{array} = \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \end{array} + \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \end{array} = \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \end{array} = \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \end{array} = \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
$\int_{1} \frac{1}{2} \frac{1}{200} P_n = e_{x} p$	
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
$P_{4}(x) = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!}$	+ <u>×</u> ⁴ 4!
$P'_{4}(x) = 1 + x + \frac{x^{2}}{2!}$	$\frac{3}{1}$
	$P_3(x)$

 $exp(x) = e^{x}$ $e_{xp'}(x) = e^{k} = e_{xplux})$ $exp(x) = \lim_{h \to \infty} p_n(x)$ $\frac{d}{dx} \exp(\omega) = \frac{d}{dx} \lim_{n \to \infty} P_n(x) = \lim_{n \to \infty} \frac{d}{dx} P_n(x)$ $= \lim_{n \to \infty} \rho_{n-1}(x)$ ling $= e \times p(\psi)$ 010

$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Def: Let $f_n: A \rightarrow IR$ be a sequence of functions. Suppose $f: A \rightarrow IR$.
We say fn -> f pointwise of for all
$x \in A, f_n(x) \rightarrow f(x).$

e.g. $f_n(x) = \int_n^1 \pm x^2$ $f_n(o) = \int_{n}^{1} \rightarrow 0$ $f_n(3) = \int_{-1}^{-1} f_n(3) = \int_{-1}^{-1} f_n(3)$ $f_n(-2) \longrightarrow 2$ f. -> abs pointwise.

 $f_n(x) = \int_n^1 + x^2$ $f_{1}(x) = 1 - .2$ $2 \sqrt{1} + x^2$ $\frac{1}{2} = \frac{1}{2} \left(\frac{1}{2} \right) \left(\frac{1}{2} + \frac{1}{2}$ 20 fn -> abs [x] 7-1 x40 5. (07 =

$f_{n}(\omega) = \chi^{n} on [o, 1]$ $f_{n}(\omega) = 0^{n} \Rightarrow 0$ $f_{n}(1/2) = (\frac{1}{2})^{n} \Rightarrow 0$

 $(x) \longrightarrow f(x)$ point wise $(\omega) = \frac{1}{2}$ 9 f.(x)= cn

The positure lumit of continuous functions reed not le continuous. The pointurse land of diff factions reed not le diff. Suppose fr >f pointuise. Earch fr 13 configues. How come f reel not be continuous?

fis des at want f is cts at c $f(x) - f(c) \le |f(x) - f_n(x)|$ (x-c) < 8 $\int_{\Lambda}(\omega) - f_{\Lambda}(\omega)$ $+ | f_{n}(c) - f(c) |$ Given E20 us confind N 50

$\left f_{v}(c) - f(c) \right < \frac{\varepsilon}{3}$
Since fr 15 contanuos 2 c
we can find a $\delta 70 = 18 x-c < \delta$ then $ f(x) = 1 x = 1 = 1$

If K-cl 48 $|f(x)-f(x)| \leq |f(x)-f_{\nu}(x)| + \frac{2\varepsilon}{3}$ we have no gavantee that for all X with $|x-c| \leq 6$, $|f(x)-f_{N}(x)| \leq \frac{\varepsilon}{2}$

Def: A sequence of functions fins f uniformly of for all E>D there exists N so that if n>N $f_n(x) - f(x) < \varepsilon$ for all $x \in A$, $(f_{\Lambda}, f: A \rightarrow R)$