Babsi Version (IVT)

There is an $x \in(a, b)$ where $f(x)=0$.
Contunch is reeded: $f(x)=\left\{\begin{array}{cc}-1 & -15 x<0 \\ 1 & 0 \leqslant x \leqslant 1\end{array}\right.$

Tool: preinge of a set.

$$
\begin{aligned}
f: A & \rightarrow \mathbb{R} \\
B & \subseteq \mathbb{R} \\
f^{-1}(B) & =\{a \in A: f(a) \in B\}
\end{aligned}
$$

$$
v \in f^{\prime}([1, \infty)) ? S\{x \in \mathbb{R}: f(x) \in[1, \infty)\}
$$

$$
f(0)=0 \otimes[1, \infty)
$$

$$
\begin{aligned}
& f:[a, b] \rightarrow \mathbb{R} \rightarrow \\
& B=(-\infty, 0] \\
& \begin{aligned}
A_{0} & =f^{-1}((-\infty, 0])=
\end{aligned} \begin{aligned}
&\{x \in[a, b]: \quad f(x) \in(-\infty, 0]\} \\
&=\{x \in[a, b]: f(x) \leqslant 0\}
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
A_{0} & =f^{-1}((-\infty, 0]) \\
& =\{x \in[a, b] ; f(x) \leqslant 0\}
\end{aligned}
$$

$$
f(x)=0
$$

We hope that $x=\sup \left(A_{0}\right)$

$$
f(x)=0 .
$$

is to boarded above?

$$
\text { is } A_{0} \neq \phi ?
$$

$$
\longrightarrow \text { nope! } f(a)<0 \text { so } a \in 4_{0}
$$

$$
A_{0} \subseteq[a, b]
$$

$\longrightarrow b$ is an raper bound.

$$
w_{n} \leqslant 0 \quad w_{n} \rightarrow w \rightarrow \quad \rightarrow \quad \omega \leqslant 0
$$

Lint order thearay

Lena Suppose $A \subseteq \mathbb{R}$ is nonempty and boeuled above and hence admits a supnemun $x=\sup (A)$.
Then there exists a sequere (an) in A $w_{i} t_{n} \quad a_{n} \rightarrow x_{0}$

$$
\varepsilon=\frac{1}{n}
$$

Pf: By Lea 1.3 .8 for each $n \in \mathbb{N}$ thee exists $a_{n} \in A$ such flat $x-\frac{1}{n}<a_{n} \leqslant x_{0}$.

Than, by the squeeze thewan, $a_{n} \rightarrow x$.

$\sup A-\varepsilon$ is not an apperband of A
\Rightarrow there exists $a \in A$ sit. $\sup A-\varepsilon<a \leq \sup A$

Pf: (IUT, basic version)
Suppose $f:[a, b] \rightarrow \mathbb{R}$ is continues and

$$
f(a)<0<f(b) .
$$

Let $A_{0}=f^{-1}((-\infty, 0])$. Sure $f(a)<0$, $a \in A_{0}$ ad $A_{0} \neq \phi$. Sike $A_{0} \subseteq[a, b]$ it
is beaded above Thus A_{0} admits a supreman x and we clack $f(x)=0$.

First, let $\left(O_{n}\right)$ be a sequare in A_{0} conversing to x; bruch a sequence exists by the previous lemma. Observe that $f\left(a_{n}\right) \leqslant 0$ for all n. By continuity $f\left(a_{n}\right) \rightarrow f(x)$ so $f(x) \leqslant 0$ also. Sauce $f(b)>0, x \neq 6$. This the
interval $(x, 6]$ is ron empty. Since x is the supronom of A_{0} and since each $z \in(x, 0]$ ratifies $z>x$, it follows that $z \& A_{0}$ so $f(z)>0$.
Let $\left(b_{n}\right)$ be a sequence in $(x, b]$ conversing to x (for excuple, $x+\frac{b-x}{n}=b_{1}$ will work). Then $f^{\prime}\left(b_{n}\right)>0$ for end 1 and $b_{1} \rightarrow x$ so by continuity

$$
f\left(b_{1}\right) \rightarrow f(x) \text { and } f(x) \geqslant 0 \text {. }
$$

Heace $f(x)=0$.

