Mean Value Theorems:
$f:[a, b] \rightarrow R$, continciaus.

$$
f \text { is diff on }(a, b) \text {. }
$$

such that

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

Some setup, bet you krone $f^{\prime}(x)=0$ for all $x \in(a, b) \Rightarrow f$ is constant.

$$
\begin{aligned}
& {[a, x] \quad a<x \leqslant b} \\
& (a, x) \subseteq(a, b)
\end{aligned}
$$

There exists $c \in(a, x)$ such that

$$
\begin{aligned}
& 0=f^{\prime}(c)=\frac{f(x)-f(a)}{x-a}, \Rightarrow f(x)=f(a) \\
& f(x)=f(a) \forall x \in(a, b] \quad[a, b]
\end{aligned}
$$

$$
f^{\prime}(x)>0 \quad(a, b)
$$

If $\quad a \leqslant x_{1}<x_{2} \leqslant b$

$$
\Rightarrow f\left(x_{2}\right)>f\left(x_{1}\right)
$$

I.e. f is strictly increasing.

Prop Suppose f is continuous an $[a, b]$, differentiable on (a, b) and $f^{\prime}(x)>0$ for all $x \in(a, b)$. \geqslant

Then if $x_{1}, x_{2} \in[a, b]$ and $x_{1}<x_{2}$
then $f\left(x_{1}\right)<f\left(x_{2}\right)$.
Pf: Let $x_{1}, x_{2} \in[a, b]$ with $x_{1}<x_{2}$. Olosere f is contanciers on $\left[x_{1}, x_{2}\right]$ and differentiable on $\left(x_{1}, x_{2}\right) \subseteq(a, b)$.
The news value thearen the implies
there exists $c \in\left(x_{1}, x_{2}\right)$ such that

$$
f^{\prime}(c)=\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}
$$

Hence $f\left(x_{2}\right)=f\left(x_{1}\right)+f^{\prime}(c)\left(x_{2}-x_{1}\right)$.

Sure $f^{\prime}(c)>0$ and since $x_{2}>x$ we conclude $f^{\prime}(c)\left(x_{2}-x_{1}\right)>0$ and

$$
f\left(x_{2}\right)>f\left(x_{1}\right) .
$$

f, g on $[a, b]$, cts,
diff (a, b)

$$
\begin{aligned}
& f^{\prime}(x)=g^{\prime}(x) \quad \forall x \in(a, b) \quad \forall \forall x(a, b) \\
& F(x)=f(x)-g(x) \quad F^{\prime}(x)=f^{\prime}(x)-g^{\prime}(x)=0
\end{aligned}
$$

F is constun.

$$
\begin{aligned}
& F(x)=c \quad \forall x \\
& f(x)-g(x)=c \quad \forall x \\
& f(x)=g(x)+c
\end{aligned}
$$

$$
F^{\prime}(x)=0
$$ evoculure

diff on (a, b)

$$
\gamma^{\prime}(t)=\left(x^{\prime}(t), y^{\prime}(t)\right)
$$

$(\Delta x, \Delta y)$ is proullel to

$$
\left(x^{\prime}(\epsilon), y^{\prime}(\epsilon)\right)
$$

for some $t \in(a, b)$.

$$
\begin{aligned}
& \Delta_{x} y^{\prime}-\Delta y x^{\prime}=0 \\
& \Rightarrow(\Delta x, \Delta y) \text { ad }\left(x^{\prime}, y^{\prime}\right) \text { lie on } \\
& \text { the sure line } \\
& \left(\Delta x, \Lambda_{y}\right)=\lambda\left(x^{\prime}, y^{\prime}\right) \text { for sore } \lambda+\mathbb{R} \\
& \left(x^{\prime}, y^{\prime}\right)=\lambda\left(\Delta_{y} \Delta_{y}\right)--\quad
\end{aligned}
$$

Gerealized MUT
Suppose $f, g:[a, b] \rightarrow R$ are continues and that f, g are diffoertuble on (a, b).
Then there exists $c \in(a, b)$ such that

$$
(f(b)-f(a)) g^{\prime}(c)-(g(b)-g(a)) f^{\prime}(c)=0
$$

More over, if $g^{\prime}(x) \neq 0$ for all $x \in(a, b)$
He, $\quad \frac{f^{\prime}(c)}{g^{\prime}(c)}=\frac{f(b)-f(a)}{g(b)-g(a)}$.

Pf: easy cor of MUT Home work.

Cor L'Hopital's Rale ($\frac{0}{0}$)
Supper f and g we contmeecs on an internal $[0, b]$ corning a point c in (a, b). Supper mower that f, g are differatable on $(a, b) \backslash\{c\}$.

Fully suppose $f(c)=g(c)=0 \quad \frac{f(x)}{g(x)}$ and that $\operatorname{lom}_{x \rightarrow c} \frac{f^{\prime}(x)}{g^{\prime}(x)}=L$ foo Some L. Then $\lim _{x \rightarrow c} \frac{f(x)}{g(x)}=L$ as well. Pf: Generalized MUT. HQ

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{\sin (x)}{x}=\lim _{x \rightarrow 0} \frac{\cos (x)}{l}=\frac{\cos (0)}{1}=\frac{1}{1}=1 \\
& \frac{0}{0}
\end{aligned}
$$

Intesration.

$$
\int_{a}^{b} f(x) d x
$$

(1) divide $[a, b]$ into n equal width suboirteinas of width $\Delta_{k}=\frac{b-a}{n}$
(2) Let $x_{k}=a+k \Delta x \quad 0 \leqslant k \leqslant \eta$

(3) In each interval prck a smple porit

$$
x_{k}^{*} \in\left[x_{k-1}, x_{k}\right] .
$$

(4) Forn $\sum_{k=1}^{n} f\left(x_{k}^{*}\right) \Delta x:=S_{n}$
(5) $\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} S_{n}$.
(d) Do the intermb reed to be equil vidth
(b) Sn depenls on the drove of sauple points the laut?
(c) Does S_{n} even converge?

Darbanx

$$
\begin{aligned}
& f, g \\
& f^{\prime \prime}(x)=g^{\prime \prime}(x) \quad \forall x \in[a, b] \\
& f^{\prime}(x)=g^{\prime}(x)+c \\
& F=f-g
\end{aligned}
$$

