Axiom of Complete ness:
Every nonempty subset of \mathbb{R} that is Sounded above admits a suprencan.

Consequences: (1) \mathbb{N}) is rot bounded above (on \mathbb{R})
(2) Numbers of the form $1 / n, n \in \mathbb{N}$ cai be under as small as you please.

Axiom of \mathbb{N}
Well ordering: every rorempty subset of \mathbb{N} hus a least element

Prop: Suppose $a, b \in \mathbb{R}, a<b$. Then there exists $q \in \mathbb{X}$ such that

$$
a<q<b
$$

Known as the density of rational numbers.

Pf: We will assume that $a \geqslant 0$; the geneal cause then follows by an easy argument.
Pick $n \in \mathbb{N}$ such that $\frac{1}{n}<b-a($ see Prop 1.4 .2 (iii)).
Let $S=\left\{m \in \mathbb{N}=\frac{m}{n}>a\right\}$.
There exists $M \in \mathbb{N}$ such that, $M>n a$ and have $S \neq \phi$.

$$
G \frac{M}{n}>a
$$

By the Well ordering of W) S admits a least element, call it m .
I clam that $a<\frac{m}{n}<b$.
In deed, $a<\frac{m}{n}$ by the definition of S.

Moreover $\frac{m-1}{n} \leqslant a$ (either because $m=1$
and hance $\frac{m-1}{n}=0$ or bécause $m-1 \in \mathbb{N}$ ad m is the least elenert of S).

But then

$$
\begin{aligned}
& \frac{m}{n} \leqslant a+\frac{1}{n} \leqslant a+(b-a) \\
& m-1 \& S \\
& =b \text { 。 } \\
& 1 \quad b-a>\frac{1}{n}
\end{aligned}
$$

Def: If $x \in \mathbb{R}$ and $x \notin \mathbb{Q}$ then x is irrational.

We will see shortly that there is a real number satisfying $x^{2}=2$. We proved cavies that such a umber connat be rations and is hence irrational.

Next homework: Kou'll use the density of \mathbb{Q} to prove the density of the urational numbers. There are both
 ration id matronal numbers,

Nested luteral Properity.
Idera: \mathbb{R} hus "ro holes." Captanes, in some serse, the wond completeress.

Intervals $I_{n}=\left[a_{n}, b_{n}\right], \quad a_{n} s b_{n}$
nested: $\quad I_{n+1} \subseteq I_{n}$

$$
\begin{aligned}
& I_{1}=[0,1] \\
& I_{2}=[\operatorname{oos},] \\
& I_{0}=[0,1]
\end{aligned}
$$

Claim: $\cap I_{k} \neq \phi$
$\cap I_{k}=[0,1]$

Requwennts: the intervals line to be closed.

$$
\begin{aligned}
& I_{n}=\left(0, \frac{1}{n}\right] \\
& I_{n+1} \leqslant I_{n} \quad \frac{1}{n+1} \leqslant \frac{1}{n} \\
& \cap I_{k}=\varnothing
\end{aligned}
$$

\Longrightarrow suppose to the contrary flat $x \in \cap I_{k}$. So $x \in I_{k}$ fer all k and hence $x>0$. But then there exists $n \in \mathbb{N}$ such that $\frac{1}{n}<x$.
But then $x \notin I_{n}$, a contradiction

$$
I_{n}=\left\{z: 0<z \leq \frac{1}{n}\right\}
$$

The intervals have to be rested.

$$
\begin{array}{ll}
I_{k}=[k-1, k] & I_{1} \cap I_{2}=\{1\} \\
\cap I_{k} & I_{1} \wedge I_{2} \wedge I_{3}=\phi \\
I_{3}=[2,3] & \left\{2 \in \mathbb{Q}:+-\frac{1}{n} \leqslant q \leqslant \pi+\frac{1}{n}\right\}
\end{array}
$$

