Namber 5	· · · ·	· · ·	· · · ·
N 1, 2, 3,4,	· · · ·	· ·	
opention: +, • induction!	· · · ·	· · ·	· · · ·
N_{o} O_{j} l_{j} 2_{j} 3_{j}	· · · ·	· · ·	· · · ·
integers Z, -3, -2, -1, 0, 1, 2, 3,	· · · ·	· · ·	· · · ·
opensions: all of W (no induction)	 	· ·	· · · ·
two greated ones: 0 of $a = a$ 1 $1 \cdot a = a$	· · · ·	· · · · · · · · · · · · · · · · · · ·	· · · ·

ration R crtaitively	$a, b \in \mathbb{Z}$
	$b \neq \mathcal{O}$.
$\begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} $	$a'_{b'}$ if $ab' = a'b$
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
Opentions? all ef	Z, plus diversion
There are lengths the	at as not national
	$1^{2} + 1^{2} = l^{2}$
1	$\mathcal{L} = 2$
· · · · · · · · · · · · · · · · · · ·	

Theorem: There does not exist a varianal number &
such that $\chi^2 = Z$.
Pf: Suppose to the contrary that get the and g ² = Z.
We can write $q = a/b$ where $a, b \in \mathbb{Z}$, $b \neq 0$
ord a and b have no common factors.
Notice $a = 2b$ and
$a^2 = g^2 b^2 = 2b^2$.
Hence a ² is even, as is a. Thus a = 2c for
some c c Z. But then a = 26 20
2c = 2b
and

. .	$4c^2 = 2^2 b^2$ = $2^2 b^2$.	•
But then b^2 : sume reasoning as	2 c ² ad 6 is even by the before. Have a and 6 live Z	•
05 a common fuctor	s a contradiction. I	•
That leads us to I	R, 11e veal rambers.	•
. .		•
		•

Rulos:	D Field
	a) Has commutative associative barry operations
· · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
. 	b) Has additives nult-identifes (0,1)
· · · · · · · · · ·	c) thes additure inverse $a + (-a) = 0$
. .	$d\lambda Has malt - - a a^{-1} = 1$ $(a \neq 0)$
· · · · · · · · · ·	c) Distributive lans a (b+c) = ab+ac.
	(2) Ordered. Notion of \angle . If $a,b \in \mathbb{R}$ $a \neq b$, then $a \neq b$ or $b \leq a$.