Nambers:

$$
\mathbb{N} \quad 1,2,3,4, \ldots
$$

opeation: + ,
induction!
$N_{0} \quad 0,1,2,3, \ldots$
integer $\mathbb{Z} \ldots,-3,-2,-1,0,1,2,3, \ldots$
opantions: all of \mathbb{N} (ro induction)
two specird ones: $0 \quad \operatorname{ota}=a$
$1 \quad 1 \cdot a=a$
rational \mathbb{Q}

$$
\begin{aligned}
\text { intuitively: } a / b \quad a, b & \in \mathbb{Z} \\
& b \neq 0 \\
\frac{a}{b}=\frac{a^{\prime}}{b^{\prime}} \quad \text { if } a b^{\prime} & =a^{\prime} b
\end{aligned}
$$

opartiong all \& \mathbb{Z}, plus divesicen

There are lengths That ae not rational

$$
\begin{array}{r}
1^{2}+1^{2}=l^{2} \\
l^{2}=2
\end{array}
$$

Theorem. There does not exist a rational number x such that $x^{2}=2$.

Pf: Suppose to the contrary that $q \in \mathbb{a}$ and $q^{2}=2$. We car write $q=a / b$ where $a, b \in \mathbb{Z}, b \neq 0$ and a and b have no common factors.

Notice $a=2 b$ and

$$
a^{2}=a^{2} b^{2}=2 b^{2} .
$$

Hence a^{2} is even, as is a. Thu $a=2 c$ for some $c \in \mathbb{Z}$. But then $a=q b$ so

$$
2 c=q b
$$

and

$$
\begin{aligned}
4 c^{2} & =q^{2} b^{2} \\
& =2 b^{2}
\end{aligned}
$$

But then $b^{2}=2 c^{2}$ ad b is even by the sane rcusoroy as before. Hance a and b hae \mathbb{Z} as a common factor, a contruliztian

That leads us to $\mathbb{R}_{\text {, }}$ the neal numbers.

Rulos: (1) Field
a) Has commetating associative biray operations ,$+ \cdot$.
b) Ths additives mult. identites $(0,1)$
c) Hes additure inverse $a+(-a)=0$
d) Hes mult $\ldots a \cdot a^{-1}=1$

$$
(a \neq 0)
$$

c) Distributive law $a(b+c)=a b+a c$.
(2) Orde-ed. Notion of $<$. If $a, b \in \mathbb{R}$ $a \neq b$, then $a<b$ or $b<a$.

