The aim of this worksheet is to prove the following theorem.
Theorem 1 (Alternating Series Theorem). Suppose $\left\{a_{n}\right\}_{n=1}^{\infty}$ is a monotone decreasing sequence of non-negative numbers such that $\lim _{n \rightarrow \infty} a_{n}=0$. Then the series

$$
\sum_{n=1}^{\infty}(-1)^{n+1} a_{n}
$$

converges.
In the following, we suppose we are given a sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ satisfiying $a_{1} \geq a_{2} \geq a_{3} \cdots>0$ and $\lim _{n \rightarrow \infty} a_{n}=0$. Let s_{n} denote the $n^{\text {th }}$ partial sum of the series.

1. Show that the subsequence $s_{2 j+1}$ is a decreasing sequence.
2. Show that the subsequence $s_{2 j}$ is an increasing sequence.
3. Use the equation $s_{2 j+1}=s_{2 j}+a_{2 j+1}$ (and the previous two problems) to show that $\left\{s_{2 j}\right\}_{j=1}^{\infty}$ is bounded above by s_{1}.
4. Find (with proof) a lower bound for $s_{2 j+1}$.
5. Conclude that there are numbers L and L^{\prime} such that $\lim _{j \rightarrow \infty} s_{2 j}=L$ and $\lim _{j \rightarrow \infty} s_{2 j+1}=L$.
6. Show that in fact $L=L^{\prime}$.
7. Look at problem 2.3.5 in your text. Use it to conclude the proof. [You should be motivated now to prove problem 2.3.5!]

If you are bored, try the following alternative approach to proving the theorem.
8. Let $j \in \mathbb{N}$. Suppose $k \geq 2 j-1$. Show $s_{2 j} \leq s_{k} \leq s_{2 j-1}$.
9. Conclude that if $n>m \geq 2 j-1$ then

$$
\left|s_{n}-s_{m}\right| \leq a_{2 j} .
$$

10. Deduce that the sequence of partial sums is Cauchy and therefore converges to a limit.
