The aim of this worksheet is to prove the following theorem.

Theorem 1 (Alternating Series Theorem). Suppose $\{a_n\}_{n=1}^{\infty}$ is a monotone decreasing sequence of non-negative numbers such that $\lim_{n\to\infty} a_n = 0$. Then the series

$$\sum_{n=1}^{\infty} (-1)^{n+1} a_n$$

converges.

In the following, we suppose we are given a sequence $\{a_n\}_{n=1}^{\infty}$ satisfying $a_1 \ge a_2 \ge a_3 \dots > 0$ and $\lim_{n\to\infty} a_n = 0$. Let s_n denote the n^{th} partial sum of the series.

- **1.** Show that the subsequence s_{2j+1} is a decreasing sequence.
- **2.** Show that the subsequence s_{2j} is an increasing sequence.
- **3.** Use the equation $s_{2j+1} = s_{2j} + a_{2j+1}$ (and the previous two problems) to show that $\{s_{2j}\}_{j=1}^{\infty}$ is bounded above by s_1 .
- **4.** Find (with proof) a lower bound for s_{2j+1} .
- **5.** Conclude that there are numbers *L* and *L'* such that $\lim_{j\to\infty} s_{2j} = L$ and $\lim_{j\to\infty} s_{2j+1} = L$.
- **6.** Show that in fact L = L'.
- 7. Look at problem 2.3.5 in your text. Use it to conclude the proof. [You should be motivated now to prove problem 2.3.5!]

If you are bored, try the following alternative approach to proving the theorem.

- **8.** Let $j \in \mathbb{N}$. Suppose $k \ge 2j 1$. Show $s_{2j} \le s_k \le s_{2j-1}$.
- **9.** Conclude that if $n > m \ge 2j 1$ then

$$|s_n - s_m| \le a_{2j}.$$

10. Deduce that the sequence of partial sums is Cauchy and therefore converges to a limit.