Please see the rules on the second page.

- **1.** Let *A* and *B* be nonempty sets that are bounded above. Suppose $\sup A < \sup B$. Prove that there is an element of *B* that is an upper bound for *A*.
- **2.** In class we proved that \mathbb{N}^2 is countably infinite. Use this fact and a proof by induction to show that \mathbb{N}^n is countably infinite for every $n \in \mathbb{N}$.
- 3. Compute

$$\lim_{n\to\infty}\frac{3^n}{n!}$$

A fully rigorous proof will likely involve at some point a proof by induction.

- 4. Text: 2.3.5
- **5.** Suppose \mathcal{F} is a collection of open intervals such that if $I, J \in \mathcal{F}$ and $I \neq J$, then $I \cap J = \emptyset$. Prove that \mathcal{F} is countable.
- **6.** Let (x_n) be a sequence converging to *L*. Define

$$y_n = \frac{x_1 + \dots + x_n}{n}.$$

That is, y_n is the average of the first *n* terms of the sequence of x_n . Show that $\lim y_n = L$ as well.

- **7.** Use the Bolzano-Weierstrass theorem to prove the Monotone Convergence Theorem without assuming any other form of the Axiom of Completeness.
- **8.** Suppose (x_n) is a sequence and that for all $n \ge 2$,

$$|x_{n+1}-x_n| \leq \frac{1}{2}|x_n-x_{n-1}|.$$

Show that the sequence converges.

9. Let (a_n) and (b_n) be sequences with $b_n \ge 0$ for all n and $\lim_n b_n = 0$. We say that $a_n = \mathcal{O}(b_n)$ if there is a constant C such that $|a_n| \le Cb_n$ for all n. Roughly speaking, $a_n = O(b_n)$ if the sequence a_n converges to zero at least as fast as the sequence b_n .

Suppose a_n and b_n are sequences with $b_n > 0$. Suppose also that $\lim_n \frac{a_n}{b_n} = L$ for some number *L*. Prove that $a_n = \mathcal{O}(b_n)$.

- **10.** Suppose (a_n) and (b_n) are sequences with $b_n \ge 0$ and $a_n = \mathcal{O}(b_n)$.
 - a) Suppose that $\sum b_n$ converges. Prove that $\sum a_n$ converges also.
 - b) Suppose that $\sum a_n$ diverges. Prove that $\sum b_n$ diverges.
 - c) Determine if $\sum_{n=1}^{\infty} \sqrt{\frac{n^3 3n + 2}{8n^4 + n^2 + 22}}$ converges.

Rules and format:

- You are welcome to discuss this exam with me (David Maxwell) to ask for hints and so forth.
- If you find a suspected typo, please contact me as soon as possible and I will communicate it to the class if needed.
- You my not discuss the exam with anyone else until after the due date/time.
- You may freely use any result proved in class, or in your text, or on a homework assignment, but you must cite any such result. However, you may not cite a result that makes a problem trivial. Ask me if you have any questions about using a particular result.
- You are permitted to use other real analysis texts besides the course text in writing up your solutions, but you must acknowledge any such use.
- Each problem is weighted equally.
- The due date/time is absolutely firm.