Exercise 2.4.5 (Modified, with hints!): Suppose $x_{1}=2$ and define

$$
x_{n+1}=\frac{1}{2}\left(x_{n}+\frac{2}{x_{n}}\right) .
$$

1. Show that $x_{n} \geq 0$ for all n.
2. Show that if $a>0$ then $a+\frac{1}{a} \geq 2$. Hint: $(a-1)^{2} \geq 0$. [Your proof should highlight the part where you use the hypothesis $a>0$.]
3. Show that if $b \neq 0$ then $b^{2}+4 / b^{2} \geq 4$. Hint: Use the previous item!
4. Show that $x_{n}^{2} \geq 2$ for all n. Hint: Use the previous item!
5. Show that $x_{n} \geq x_{n-1}$ for all n. Hint: Use the previous item!
6. Show that the sequence converges to a limit L.
7. Show that $L \neq 0$. Hint: If $x_{n} \rightarrow 0$ then $x_{n}^{2} \rightarrow 0$.
8. Show that $L^{2}=2$. Hint: $\lim x_{n+1}=\lim x_{n}$.

Exercise 2.5.5:

Exercise 2.5.6:

Exercise 2.5.7:

Exercise 2.6.2:

Exercise 2.6.7 (b):

