Exercise 2.4.5 (Modified, with hints!): Suppose $x_1 = 2$ and define

$$x_{n+1} = \frac{1}{2} \left(x_n + \frac{2}{x_n} \right).$$

- 1. Show that $x_n \ge 0$ for all n.
- 2. Show that if a > 0 then $a + \frac{1}{a} \ge 2$. Hint: $(a 1)^2 \ge 0$. [Your proof should highlight the part where you use the hypothesis a > 0.]
- 3. Show that if $b \neq 0$ then $b^2 + 4/b^2 \ge 4$. Hint: Use the previous item!
- 4. Show that $x_n^2 \ge 2$ for all *n*. Hint: Use the previous item!
- 5. Show that $x_n \ge x_{n-1}$ for all *n*. Hint: Use the previous item!
- 6. Show that the sequence converges to a limit *L*.
- 7. Show that $L \neq 0$. Hint: If $x_n \to 0$ then $x_n^2 \to 0$.
- 8. Show that $L^2 = 2$. Hint: $\lim x_{n+1} = \lim x_n$.

Exercise 2.5.5:

Exercise 2.5.6:

Exercise 2.5.7:

Exercise 2.6.2:

Exercise 2.6.7 (b):