Exercise Supplemental 1: Suppose $\left(a_{n}\right) \rightarrow a$ and $a \neq 0$. Show that there exists $N \in \mathbb{N}$ such that if $n \geq N$, then $a_{n} \neq 0$.

Exercise Supplemental 2: 1. Show that if $a, b \geq 0$ and $a>b$, then $\sqrt{a}>\sqrt{b}$.
2. Exercise 2.3.1(a)

Exercise 2.3.3:

Exercise 2.3.10: For full credit, all arguments should be short!

Exercise Supplemental 3: Show that if $\left|b_{n}\right| \rightarrow 0$, then $b_{n} \rightarrow 0$. Then show that this statement is false if we replace 0 with any other real number.

Exercise 2.3.10 (c):

Exercise C: onsider the series $\sum_{n=1}^{\infty} 1 / n^{2}$. Give a careful proof by induction that the partial sums

$$
s_{k}=\sum_{n=1}^{k} 1 / n^{2}
$$

satisfy $s_{k}<2-1 / k$.

Exercise 2.4.3(a): Hint: Use the Monotone Convergence Theorem!

