Exercise 1.4.7: Finish the proof of Theorem 1.4 .5 by showing that the assumption $\alpha^{2}>2$ contradicts the assumption that $\alpha=\sup A$.

Proof.

Exercise Supplemental 1: Give a from-scratch proof of the following facts:
(a) If $f: A \rightarrow B$ has an inverse function g, then f is injective.
(b) If $f: A \rightarrow B$ has an inverse function g, then f is surjective.

Proof (a).
Proof (b).

Exercise Supplemental 2: Show that the sets $[0,1)$ and $(0,1)$ have the same cardinality.

Exercise 1.5.10 (a) (c): (Wait until after Wednesday to start this one)
(a) Let $C \subseteq[0,1]$ be uncountable. Show that there exists $a \in(0,1)$ such that $C \cap[a, 1]$ is uncountable.
(c) Determine, with proof, if the same statement remains true replacing uncountable with infinite.

Proof (a).
Proof (b).

Exercise Supplemental 3: (Wait until after Wednesday to start this one) Suppose for each $k \in \mathbb{N}$ that A_{k} is at most countable. Use the fact that $\mathbb{N} \times \mathbb{N}$ is countably infinite to show that $\cup_{k=1}^{\infty} A_{k}$ is at most countable. Hint: take advantage of surjections.

Proof.

