- **Exercise 1.3.9:** (a) If $\sup A < \sup B$ then show that there exists an element $b \in B$ that is an upper bound for *A*.
- (b) Give an example to show that this is not necessarily the case if we we only assume $\sup A \leq \sup B$.

Proof (a).

Example for (b):

Exercise 1.3.11 : Decide if the following statements are true. Give a short proof for the true statements and a counterexample for the false statements.

- (a) If *A* and *B* are nonempty, bounded, and satisfy $A \subseteq B$ then sup $A \leq \sup B$.
- (b) If $\sup A < \inf B$ for sets A and B, then there exists $c \in \mathbb{R}$ such that a < c < b for all $a \in A$ and $b \in B$.
- (c) If there exists $c \in \mathbb{R}$ satisfying a < c < b for all $a \in A$ and $b \in B$ then $\sup A < \inf B$.

Proof.

Exercise First Edition 1.4.1: Recall that I stands for the set of irrational numbers.

- (a) Show that if $a, b \in \mathbb{Q}$ then ab and $a + b \in \mathbb{Q}$ as well.
- (b) Show that if $a \in \mathbb{Q}$ and $t \in \mathbb{I}$ then $a + t \in \mathbb{I}$ and if $a \neq 0$ then $at \in \mathbb{I}$ as well.
- (c) Part (a) says that the rational numbers are closed under multiplication and addition. What can be said about *st* and s + t when $s, t \in \mathbb{I}$?

Proof.

Exercise First Edition 1.4.2: Let $A \subseteq \mathbb{R}$ be nonempty and bounded above. Let $s \in \mathbb{R}$ have the property that for all $n \in \mathbb{N}$, s + (1/n) is an upper bound for A but s - (1/n) is not an upper bound for A. Show that $s = \sup A$.

Proof.

Exercise First Edition 1.4.3: Show that $\bigcap_{n=1}^{\infty}(0, 1/n) = \emptyset$.

Proof.

Exercise First Edition 1.4.4: Let a < b be real numbers and let $T = [a, b] \cap \mathbb{Q}$. Show that sup T = b.

Proof.

Exercise First Edition 1.4.5: Use Exercise 1.4.1 to provide a proof of Corollary 1.4.4 (Density of Rational Numbers) by considering real numbers $a - \sqrt{2}$ and $b - \sqrt{2}$.

Proof.