Exercise 1.3.9: (a) If $\sup A<\sup B$ then show that there exists an element $b \in B$ that is an upper bound for A.
(b) Give an example to show that this is not necessarily the case if we we only assume $\sup A \leq \sup B$.

Proof (a).
Example for (b):

Exercise 1.3.11 : Decide if the following statements are true. Give a short proof for the true statements and a counterexample for the false statements.
(a) If A and B are nonempty, bounded, and satisfy $A \subseteq B$ then $\sup A \leq \sup B$.
(b) If $\sup A<\inf B$ for sets A and B, then there exists $c \in \mathbb{R}$ such that $a<c<b$ for all $a \in A$ and $b \in B$.
(c) If there exists $c \in \mathbb{R}$ satisfying $a<c<b$ for all $a \in A$ and $b \in B$ then $\sup A<\inf B$.

Proof.

Exercise First Edition 1.4.1: Recall that \mathbb{I} stands for the set of irrational numbers.
(a) Show that if $a, b \in \mathbb{Q}$ then $a b$ and $a+b \in \mathbb{Q}$ as well.
(b) Show that if $a \in \mathbb{Q}$ and $t \in \mathbb{I}$ then $a+t \in \mathbb{I}$ and if $a \neq 0$ then $a t \in \mathbb{I}$ as well.
(c) Part (a) says that the rational numbers are closed under multiplication and addition. What can be said about $s t$ and $s+t$ when $s, t \in \mathbb{I}$?

Proof.

Exercise First Edition 1.4.2: Let $A \subseteq \mathbb{R}$ be nonempty and bounded above. Let $s \in \mathbb{R}$ have the property that for all $n \in \mathbb{N}, s+(1 / n)$ is an upper bound for A but $s-(1 / n)$ is not an upper bound for A. Show that $s=\sup A$.

Proof.

Exercise First Edition 1.4.3: \quad Show that $\cap_{n=1}^{\infty}(0,1 / n)=\emptyset$.

Proof.

Exercise First Edition 1.4.4: Let $a<b$ be real numbers and let $T=[a, b] \cap \mathbb{Q}$. Show that $\sup T=b$.

Proof.

Exercise First Edition 1.4.5: Use Exercise 1.4.1 to provide a proof of Corollary 1.4.4 (Density of Rational Numbers) by considering real numbers $a-\sqrt{2}$ and $b-\sqrt{2}$.

Proof.

