Exercise 1.2.6 [Modified]: Use the triangle inequality to establish the following inequalities:

(a) $|a - b| \le |a| + |b|;$

(b) $||a| - |b|| \le |a - b|$.

Proof.

Exercise 1.2.7(b), (d): Given a function f and a subset A of its domain, let f(A) represent the range of f over the set A; that is, $f(a) = \{f(x) : x \in A\}$.

- (b) Find two sets A and B for which $f(A \cap B) \neq f(A) \cap f(B)$.
- (d) Form and prove a conjecture concerning $f(A \cup B)$ and $f(A) \cup f(B)$.

Proof (b).

Proof(d).

Exercise 1.2.11: Form the logical negation of each claim. Do not use the easy way out: "It is not the case that..." is not permitted

- (a) For all real numbers satisfying a < b, there exists $n \in \mathbb{N}$ such that a + (1/n) < b.
- (b) There exist a real number x > 0 such that x < 1/n for all $n \in \mathbb{N}$.
- (c) Between every two distinct real numbers there is a rational number.

Solution:

(a)

- (b)
- (c)

Exercise [1.2 Supplement]: Show that the sequence $(x_1, x_2, x_3, ...)$ defined in Example 1.2.7 is bounded above by 2. That is, show that for every $i \in \mathbb{N}$, $x_i \leq 2$.

Proof.

Exercise 1.3.5: Let *A* be bounded above and let $c \in \mathbb{R}$. Define $cA = \{ca : a \in A\}$.

(a) If $c \ge 0$, show that $\sup(cA) = c \sup(A)$.

(b) Postulate a similar statuent for $\sup(cA)$ when c < 0.

Proof(a).

Statement for part (b):

Exercise 1.3.7: Prove that if *a* is an upper bound for *A* and if *a* is also an element of *A*, then $a = \sup A$.

Proof.

Exercise 1.3.8: Compute, without proof, the suprema and infima of the following sets.

- (a) $\{m/n : m, n \in \mathbb{N} \text{ with } m < n\}$.
- (b) $\{(-1)^m/n : n, m \in \mathbb{N}\}.$
- (c) $\{n/(3n+1) : n \in \mathbb{N}\}.$
- (d) $\{m/(m+n) : m, n \in \mathbb{N}\}.$

Solution:

(a)

- (b)
- (c)
- (d)