Exercise 1.2.6 [Modified]: Use the triangle inequality to establish the following inequalities:
(a) $|a-b| \leq|a|+|b|$;
(b) $\| a|-|b|| \leq|a-b|$.

Proof.

Exercise 1.2.7(b), (d): Given a function f and a subset A of its domain, let $f(A)$ represent the range of f over the set A; that is, $f(a)=\{f(x): x \in A\}$.
(b) Find two sets A and B for which $f(A \cap B) \neq f(A) \cap f(B)$.
(d) Form and prove a conjecture concerning $f(A \cup B)$ and $f(A) \cup f(B)$.

Proof (b).
Proof (d).

Exercise 1.2.11: Form the logical negation of each claim. Do not use the easy way out: "It is not the case that. . ." is not permitted
(a) For all real numbers satisfying $a<b$, there exists $n \in \mathbb{N}$ such that $a+(1 / n)<b$.
(b) There exist a real number $x>0$ such that $x<1 / n$ for all $n \in \mathbb{N}$.
(c) Between every two distinct real numbers there is a rational number.

Solution:

(a)
(b)
(c)

Exercise [1.2 Supplement]: Show that the sequence ($x_{1}, x_{2}, x_{3}, \ldots$) defined in Example 1.2.7 is bounded above by 2 . That is, show that for every $i \in \mathbb{N}, x_{i} \leq 2$.

Proof.

Exercise 1.3.5: Let A be bounded above and let $c \in \mathbb{R}$. Define $c A=\{c a: a \in A\}$.
(a) If $c \geq 0$, show that $\sup (c A)=c \sup (A)$.
(b) Postulate a similar statment for $\sup (c A)$ when $c<0$.

Proof (a).
Statement for part (b):

Exercise 1.3.7: Prove that if a is an upper bound for A and if a is also an element of A, then $a=\sup A$.

Proof.

Exercise 1.3.8: Compute, without proof, the suprema and infima of the following sets.
(a) $\{m / n: m, n \in \mathbb{N}$ with $m<n\}$.
(b) $\left\{(-1)^{m} / n: n, m \in \mathbb{N}\right\}$.
(c) $\{n /(3 n+1): n \in \mathbb{N}\}$.
(d) $\{m /(m+n): m, n \in \mathbb{N}\}$.

Solution:

(a)
(b)
(c)
(d)

