Last class:

$$
\begin{aligned}
& d: \Lambda^{\prime} \rightarrow \Lambda^{2} \\
& \left(d_{w}\right)_{i j}=\partial_{i} \omega_{j}-\partial_{j} \omega_{i} \\
& \sigma_{A_{l}}(R, S)=\left[\begin{array}{c}
0 R_{1} R_{2} R_{3} \\
0 S_{3}-s_{2} \\
0 \\
s_{1}
\end{array}\right] \\
& d_{\omega}=\sigma_{1}\left(\partial_{0 \omega}-\nabla_{\omega_{0},} \nabla_{x \vec{w}}\right) \\
& *: \Lambda^{2} \rightarrow \Lambda^{2} \sigma_{1}(-S, R) \\
& * d: \Lambda^{2} \rightarrow \Lambda^{\prime} \\
& \left.\delta=* d *: \Lambda^{2} \rightarrow \Lambda^{\prime} S,-\nabla_{x} R+\partial_{0} S\right] \\
& m=-\delta d
\end{aligned}
$$

For a stationary chase distribution

$$
M \omega=\frac{1}{c \varepsilon_{0}}\left[c p_{j}-j\right] \quad \text { in an coond system }
$$

where $\omega=[\phi, 0] \quad-\Delta \phi=\frac{1}{4 \pi \varepsilon_{0}} \rho$

Grion a currat dersily $\left[\begin{array}{c}c_{p} \\ j\end{array}\right]$ in spunctime,
a solution at Muxwell's eqcatious is a 1 -fromen satisfing

$$
m_{w}=\frac{1}{c \varepsilon_{0}} j \quad j=[c p,-j]
$$

The associated EM field is dw
We delue E, B by

$$
\sigma(E,-c B)=d \omega .
$$

On your HW: $\quad d v E=\frac{1}{\varepsilon_{0}} \rho \quad$ Gunss'tan

$$
c \nabla \times B+\partial_{0} E=\frac{1}{c \varepsilon_{0}} j \quad \text { Ampee's } L_{m u}
$$

are a consequare of $\delta d \omega=0$.

Bat also I unationd $d^{2}=0$ alums.

$$
\underbrace{\stackrel{d}{\rightarrow}}_{\substack{0 \\ \text { yowl verify }}} \Lambda^{\prime} \xrightarrow{d} \Lambda^{2} \rightarrow \Lambda^{3}
$$

$d^{2}=\Lambda^{\prime} \rightarrow \Lambda^{3}$ is had since I dilit toll gan what $1^{3} \mathrm{is}$.
But $* d d: \Lambda^{\prime} \rightarrow 1^{\prime}$ you com check.
Exercise $(\| *)) * d d=0$.

As a consequare, we obtain
two ne re equations:

$$
\begin{array}{cl}
\operatorname{div} B=0 & \text { No may sources } \\
c \partial_{0} B+\nabla_{\times E}=0 & \text { Founder's Lav }
\end{array}
$$

which are nothing more then a reflection of $d^{2}=0$.

$$
\begin{aligned}
& d \omega=A_{1}(E,-c B) \text { by det of } E, B \text {. } \\
& * d_{\omega}=\alpha^{\infty}(-c B,-E) \\
& * d * d \omega=\left(-\operatorname{div} E, c \nabla \times B-\partial_{0} S\right) \\
& -* d x d \omega-\left(\operatorname{div} E,-c \nabla_{x} B+\partial_{0} E\right) \\
& \text { *d } F(R, S)=\left[\text { div } S,-\nabla \times R+\partial_{0} S\right]
\end{aligned}
$$

So (1) $\quad \operatorname{div} E=\frac{1}{\varepsilon_{0}} \rho \quad$ (Gauss' Lan)

$$
-\nabla \times B+\partial_{0} E=-\frac{1}{c \varepsilon_{0}} j
$$

(2) $\nabla \times B=\underbrace{\frac{1}{c^{2} \varepsilon_{0}}}_{\mu_{0}} j-\underbrace{\frac{1}{c} \partial_{0} E}_{i^{\frac{1}{2} \partial_{t}}} \quad \begin{gathered}\text { Amper's equation } \\ \text { with } \\ \mu_{\text {amell's addition) }}\end{gathered}$

Ederuse: $* d d_{\omega}=0 \quad$ (arother fuce of $d^{2}=0$)

$$
\text { *d } \sigma_{F}(E,-c B)=\left[-c \operatorname{div} B,-\nabla_{x} E+\partial_{0}(-c B)\right]
$$

(3) $\operatorname{div} B=0$ (no masetic sances)
(4) $\partial_{t} B+\nabla_{x} E=O \quad$ (Famaly's Laus ot Induction]
$\delta^{2}=0$ alwas as well

$$
* d * * d *= \pm *{\underset{\breve{u}}{\hookrightarrow}+0 .}_{d^{2} *}
$$

Youll verify $\delta^{2}: \Lambda^{2} \rightarrow \Lambda^{0}=0$

$$
\begin{aligned}
& \delta: \Lambda^{2} \rightarrow \Lambda^{\prime} \text { by my recipe } \\
& \delta: \Lambda^{\prime} \rightarrow \Lambda^{0} \quad \partial_{0} \omega_{0}-\operatorname{div} \vec{\omega} .
\end{aligned}
$$

As a censequece thare is a compatabilily condition on the camut:

$$
\begin{aligned}
-\delta d \omega & =j \\
0=-\delta^{2} d \omega & =\delta \gamma
\end{aligned}
$$

Whirh is exactly that D iv $J=0 \quad J=\left[\begin{array}{l}c p \\ \bar{j}\end{array}\right]$
which is cosevation of chage dersity fon all olosewers.

Ore more feature: gauge freedom.

Suppose ω is a solution of Maxwells equations.
Let f be on function.
Then wo rf is agar a solution of Manuel's equations

$$
-\delta d(\omega+d f)=-\delta d \omega+-\delta d^{2} f=-\delta d \omega=\dot{\gamma}
$$

These are two faces of the same solution an correspond to a kind of coordinate chase I dent hae the to elaborate on.

Exercise: $-\delta d \omega=\square \omega+d \delta \omega$
where $\nabla_{\omega}=\left(\square_{\omega 0}, \square_{w_{1}} \ldots\right)$

Suppose we can find on f such that $\delta d f=-\delta_{w}$ at each time.

Then $\hat{\omega}$ is agana solution at Maxwell's equations

$$
\begin{aligned}
& \hat{\omega}=\omega+d f \quad \text { and } \\
& M \hat{\omega}=\square \hat{\omega}+d \delta(\omega+d f)=\square \hat{\omega}
\end{aligned}
$$

Ire. Maxwell's equators velure to

$$
\square \hat{\omega}=\dot{\gamma}
$$

an in homogerenes wave equation.
$\hat{\omega}$ at $t=0$ yields a unove sol. (we saw
$\partial_{\epsilon} \hat{w}$ at $t=0$ only hama. version empires)

Is this always possible?

$$
S_{d} f=-\delta_{\omega}
$$

$\square f=-\delta w$ yes! just solve the mare of
with your chore of initial sands
If a solution af maxwell's eqs exists, time
there also exists a solution $\hat{\omega}$ with $\hat{\sigma}=0$.
We call such a solution a sol in Lorentz gauge.

Harder (TH final)
We can use this obsemetion to solve manuel's equations by soluag name equations.

Real subtleties.

Neaten's Lew of Gravity

$$
\begin{aligned}
& F=-\frac{G m_{0} m}{|x|^{2}} \frac{x}{|x|} \\
& G_{f}=-\frac{G}{|x|^{2} \left\lvert\, \frac{x}{|x|}\right.} \\
& \Phi_{\delta}=\frac{G}{|x|} \\
& \phi(x)=\int \Phi_{f}(x-y) \rho(y) d y \\
& \nabla \phi=\int G_{\delta}(x-y) \rho(y) d y=\vec{y}, \text { gam fidel. } \\
& \Delta \phi=4 \pi \rho
\end{aligned}
$$

For a particle of muss m

$$
\frac{d}{d t} p=\vec{g} \mathrm{~m}
$$

Two manses

$$
\frac{d}{d t} m_{1} v=m \stackrel{\rightharpoonup}{g}
$$

inertial mass, the ore fum Newton 2 in every contest
gro. muss, orly solved in grwity.

$$
\frac{d}{d t} \vec{v}=\left(\frac{m}{m_{I}}\right) \vec{s}
$$

Observation: For all mutton the ratio $\frac{m}{m_{I}}$ is constant, and we con pick units so $m=m_{I}$

This is known as the "weak of principle" ho dds to ore punt in 10^{-13} at least.

So $\vec{a}=\overrightarrow{9}$ and all particles undergo the sure accelewtion in a fired grus field.

Note: In elecdostatices, there are neutral particles which, given wo of er forces, would turd in a strught line. So we con use them to help idectily inertial fumes.

No such joy for gruity.
We cannot measure the absolute size of the gum field.
$\left(\frac{\varepsilon_{0}}{2}\left[|E|^{2}+c^{2}|B|^{2}\right]\right.$ for $E M$ field. $)$

$$
\mu_{0} \varepsilon_{0}=c^{2}
$$

$$
\begin{gathered}
\vec{g}(x) \\
\frac{d_{\alpha}^{2}}{d t^{2}}=\vec{g}(\alpha(t))
\end{gathered}
$$

Now add a monster $\vec{G}=-G e_{3}$

New path $\frac{d^{2} \beta}{d t^{2}}=\vec{g}(\beta(t))-G e_{3}$

But introduce $\operatorname{coods} \quad \hat{z}=z+\frac{1}{2} t^{2} G$ 。

$$
\hat{\beta}(t)=\beta(t)+\frac{1}{2} G t^{2} e_{3}
$$

$$
\begin{aligned}
\hat{\beta}^{\prime \prime} & =\beta^{\prime \prime}+G e_{3} \\
& =\vec{g}(\beta(t))-G e_{3}+6 e_{3} \\
& =\vec{g}\left(\beta(t)+\frac{1}{2} G t^{2} e_{3}-\frac{1}{2} G t^{2} e_{3}\right) \\
& =g\left(\hat{\beta}(t)-\frac{1}{2} G t^{2} e_{3}\right)=\hat{g}(\hat{\beta}(t))
\end{aligned}
$$

