Lost class: EM tensor

$$
\begin{aligned}
& F=\left[\begin{array}{cccc}
0 & E_{1} & E_{2} & E_{3} \\
-E_{1} & 0 & c R_{3} & -R_{2} \\
-E_{2} & -R_{1} & 0 & c B_{1} \\
-E_{3} & A_{2} & c c & 0
\end{array}\right] \\
& \frac{d P}{d \tau}=q G F V \\
& L^{t} \hat{F} L=F \\
& \underset{\sim}{F}(\underset{\sim}{x}, \underset{\sim}{x})=X^{\top} F Y \quad F(\underset{\sim}{x}, \underline{L})=-\underset{\sim}{F}(\underline{\Psi}, \underline{x})
\end{aligned}
$$

To this point we have not usel the rolation

$$
\vec{E}=\int_{R^{3}} \vec{E}_{\delta}(x-y) p(y) d y \quad \vec{E}_{\delta}=\frac{1}{4_{\pi} \varepsilon_{0}} \frac{1}{|x|^{2}} \frac{x}{|x|}
$$

Next goal: "derme" Maxuell's equations.

No Dation:
Λ^{0} factars on aspuceline
Λ^{\prime} covector fields on spacetme $(\omega(x)=$

$$
d: \Lambda^{0} \rightarrow 1^{\prime}
$$

$\left[\omega_{0}(x), \ldots \omega_{3}(x)\right]$
hconss, $d f=\left[\partial_{0} f_{j} \ldots \partial_{3} f\right]$
It huos a comparian

$$
\begin{aligned}
\delta: \Lambda^{\prime} & \rightarrow \Lambda^{0} \\
\delta_{\omega} & =\partial_{0} \nu_{0}-\partial_{1} \omega_{1}-\partial_{2} \omega_{2}-\partial_{3} \omega_{3} \\
\omega & \rightarrow V \rightarrow D_{N} \cdot V=\delta \omega
\end{aligned}
$$

Exerise: $\quad \hat{\delta} \hat{\omega}=\delta_{\omega}$

$$
\delta d f=\square f
$$

$\Lambda^{\prime}:$ at ench $x \quad$ is a mp $\omega: V \rightarrow \mathbb{R}$.
$\Lambda^{2}:$ at end, x is a map $F: V \times V \rightarrow \mathbb{R}$,
biliner, $F(V, \omega)=-F(\omega, V)$.
(e.g. the E-M field). We an rep. by un entisymetric matrice.
Λ^{3}, Λ^{4} as well.
And euch of these is ment to be integutd
(Λ ove lines Λ^{2} over 2-Sufuces, eft).
¢ $\int_{a}^{b} x\left(\alpha^{\prime}(s) d s\right.$ is independat of poumen,

Big picture

we've sean Ths
Moreover $d^{2}=0$
we'll usict the for Maxuell

$$
\begin{aligned}
& \text { Hodge } * \quad *: \Lambda^{i} \rightarrow \Lambda^{4-i} \\
& *: \Lambda^{0} \rightarrow \Lambda^{4} \\
& : \Lambda^{\prime} \rightarrow \Lambda^{3} \\
& \Lambda^{2} \rightarrow \Lambda^{2} \\
& : \Lambda^{3} \rightarrow \Lambda^{1} \\
& \Lambda^{4} \rightarrow \Lambda^{0}
\end{aligned}
$$

In sone senge

$$
\begin{array}{ll}
\delta=* d * & \text { eig } \\
\left(\text { so } \delta^{2}=0\right) & \\
& \Lambda^{\prime} \rightarrow \Lambda^{2} \rightarrow \Lambda^{3} \rightarrow \Lambda^{\prime} \rightarrow \Lambda^{4} \rightarrow \Lambda^{0}
\end{array}
$$

But I'm soing to thy to a vord dibassins Λ^{3}, Λ^{4} ($\Lambda^{0}, \Lambda^{1}, \Lambda^{2}$ un be rep intems of natrieg, vectors)

$$
\begin{aligned}
& \Lambda^{\circ} \stackrel{d}{\underset{\delta}{e}} \Lambda^{\prime} \quad \delta d=\square \\
& \Lambda^{\prime} \stackrel{d}{\underset{~}{\leftarrow}} \Lambda^{2}-\delta d=M \rightarrow \text { makwell operator. }
\end{aligned}
$$

So who is d, δ ?

$$
\begin{gathered}
\omega=\left[\omega_{0}, \omega_{1}, \omega_{2}, \omega_{3}\right] \\
\left(d_{w}\right)_{i j}=\partial_{i} \omega_{j}-\partial_{j} \omega_{i}
\end{gathered}
$$

Execise $L^{t} \hat{d} \hat{\omega} L=d \omega \quad$ (dw trustons like a 2-fom)

Exerase $d^{2}: \Lambda^{0} \rightarrow \Lambda^{2}=0$

This is a deep gerealization of $\nabla_{x}(\nabla f)=0$

$$
\operatorname{div}(\nabla \times V)=0
$$

To describe δ I need sone rotation.
An antisymetric 4×4 madnix lus 6 inelapeadat entrices.

Given $\quad R=\left[R_{1}, R_{2}, R_{3}\right]$

$$
\begin{aligned}
S & =\left[S_{1}, S_{2}, S_{3}\right] \\
\sigma_{A}(R, S) & =\left[\begin{array}{cccc}
0 & R_{1} & R_{2} & R_{3} \\
-R_{1} & 0 & S_{3} & -s_{2} \\
-R_{2} & -S_{3} & 0 & S_{1} \\
-R_{3} & S_{2} & -S_{1}, & 0
\end{array}\right]
\end{aligned}
$$

Gives us a w.y to talk aboent then-

$$
\text { 0.g. } \quad F=\neq \neq 1(E,-c B)
$$

Exerase: if $\omega=\left[\omega_{0}, \vec{\omega}\right]$

$$
d \omega=\vec{\pi}\left(\partial_{0} \vec{\omega}-\nabla \omega_{0}, \nabla \times \vec{\omega}\right)
$$

$$
\begin{aligned}
& \text { * } \Lambda^{2} \rightarrow \Lambda^{2} \\
& \text { * } \bar{F}(R, S)=\sigma(S,-R) \\
& \text { *d } F(R, S)=\left[\operatorname{div} S,-\nabla \times R+\partial_{0} S\right] \\
& * d * \not \approx(R, S)=* d *(S,-R) \\
& =\left[-\operatorname{div} R,-\nabla_{x} S-\partial_{0} R\right] \\
& L^{t} \hat{F} L=F \\
& L^{t} \hat{\mathscr{F}} \hat{F}=* F
\end{aligned}
$$

$(* \underset{\sim}{F}$ defeed by $\quad * F)$
(well defied if $L^{t} \hat{x} \hat{F} L=x F$)

Mach huden *dF trushorus lide a 1-fam.

We deture $m: \Lambda^{\prime} \rightarrow M^{\prime}$

$$
m=-\delta d
$$

$E_{\text {xerise: }}-\delta d \omega=\square \omega-d \delta \omega$
where $\square \omega=\left(\square \omega_{0}, ., \square \omega_{0}\right)$.

Fact: $\hat{m_{\omega}} L=m_{\omega}$ (η_{ω} trusfones as a $1-f_{0} m$)

$$
\begin{aligned}
& \phi_{\delta}=\frac{1}{4 \pi \varepsilon_{0}}|x| \\
& -\nabla \phi_{\delta}=E_{\delta} \\
& \phi(x)=\int \phi_{f}(x-y) c(y) d y \\
& -\nabla \phi=\int E_{\delta}(x-y) p(y) d y=E \\
& -\Delta \phi=\int \operatorname{div} E_{\delta} p(y) d y \\
& =\frac{1}{\varepsilon_{0}} \rho \\
& d_{\omega}=\nabla_{\pi}\left(\partial_{0} \vec{\omega}-\nabla_{\omega_{0}}, \nabla_{\times \vec{b}}\right) \\
& \omega=[\phi, 0] \\
& d_{\omega}=\pi(-\nabla \phi, 0)=F \operatorname{T}(E, 0) \\
& \text { in by lime } d \omega=F \\
& d \omega=\sigma(E, \sim B)
\end{aligned}
$$

$$
\begin{aligned}
-\delta d_{\omega} & =\square \omega-d \delta_{\omega}=0 \quad \delta_{\omega}=\partial_{0} \omega_{0}-d_{v \vec{\omega}}=0 \\
& =(-\Delta \phi, 0) \\
& =\left(-d_{i 0} \nabla \phi, 0\right) \\
& =\frac{1}{c \varepsilon_{0}}(c \rho, 0)
\end{aligned}
$$

So in any frume, not jeont at reest,

$$
m_{\omega}=\frac{1}{c \varepsilon_{0}}\left(c \rho_{s}-j\right)
$$

These are Auxuell's equations velation w and clase desidy. They hald wi geeml, not justelectrostatics.

$$
\begin{aligned}
& d \omega=A_{1}(E,-c B) \text { by det of } E, B \text {. } \\
& * d_{\omega}=\alpha^{\infty}(-c B,-E) \\
& * d * d \omega=\left(-\operatorname{div} E, c \nabla \times B-\partial_{0} S\right) \\
& -* d x d \omega-\left(\operatorname{div} E,-c \nabla_{x} B+\partial_{0} E\right) \\
& \text { *d } F(R, S)=\left[\text { div } S,-\nabla \times R+\partial_{0} S\right]
\end{aligned}
$$

So (1) $\quad \operatorname{div} E=\frac{1}{\varepsilon_{0}} \rho \quad$ (Gauss' Lan)

$$
-\nabla \times B+\partial_{0} E=-\frac{1}{c \varepsilon_{0}} j
$$

(2) $\nabla \times B=\underbrace{\frac{1}{c^{2} \varepsilon_{0}}}_{\mu_{0}} j-\underbrace{\frac{1}{c} \partial_{0} E}_{i^{\frac{1}{2} \partial_{t}}} \quad \begin{gathered}\text { Amper's equation } \\ \text { with } \\ \mu_{\text {amell's addition) }}\end{gathered}$

Ederuse: $* d d_{\omega}=0 \quad$ (arother fuce of $d^{2}=0$)

$$
\text { *d } \sigma_{F}(E,-c B)=\left[-c \operatorname{div} B,-\nabla_{x} E+\partial_{0}(-c B)\right]
$$

(3) $\operatorname{div} B=0$ (no masetic sances)
(4) $\partial_{t} B+\nabla_{x} E=O \quad$ (Famaly's Laus ot Induction]

$$
\begin{aligned}
& \delta \pi \bar{T}(R, S)=* d \pi(S,-R) \\
& =\left[\operatorname{div}(-R),-\partial_{0} R-\nabla \times s\right] \\
& =-\left[\operatorname{div} R, \partial_{0} R+\nabla_{x} s\right] \\
& \delta\left[\omega_{0}, \vec{w}\right]=\partial_{0} \omega_{0}-\operatorname{div} \vec{\omega}
\end{aligned}
$$

Exerise: $\quad \delta^{2}=0$

$$
\text { But } m \omega=-\delta d \omega=\frac{\frac{1}{c \varepsilon_{0}}[c p,-j]}{n}
$$

$$
\begin{aligned}
& \delta n=-\delta^{2} d w=0 \\
& J=\left[\begin{array}{c}
c \rho \\
j
\end{array}\right]
\end{aligned}
$$

$\operatorname{Div}_{\text {iv }} J=0 \rightarrow$ consecuation of chase.

$$
\begin{array}{r}
\int_{\Omega} \ll \text { obseud } \\
\text { chare } \\
\text { dersity }
\end{array}
$$

Gauge freedom.
Suppose $\quad M_{\omega}=\frac{1}{c \varepsilon_{0}} j$

$$
\begin{aligned}
\tilde{\omega} & =\omega+d f \\
m \tilde{\omega} & =-\delta d(\omega+d f) \\
& =-\delta d \omega+-\delta d^{2} f \\
& =\frac{1}{c \varepsilon_{0}} \gamma+0
\end{aligned}
$$

Moreover, $d \tilde{\omega}=d \omega+d^{2} f=d \omega$ so sane EA field.

These are two faces of the sane solution of Maxwell's equention and reflect a kid of coordinate clunge.

$$
\text { Now } \quad \operatorname{Na}_{\omega}=\square_{\omega}-d \delta_{\omega}
$$

If we can amaze $\delta_{\omega} \equiv 0 \quad\left(\partial_{0} \omega_{0}-\operatorname{div} \vec{w}=0\right)$
than May well's equations reduce do ware equations

Is this even possible?

$$
\begin{array}{r}
\tilde{\omega}=\omega+d f \\
\delta \tilde{\omega}=\delta \omega+\delta d f \\
\quad \square f=-\delta \omega
\end{array}
$$

So f reeds to solve m mhenognaus wave eq.
[We didn't discuss, bat solution alums exists, with arbitany nutiol data]
I.e. If your am fid are, you cm find ae with $\delta \tilde{w}=0$. This choice of gauge is culled Lorentz gauze.

Start with anbitmy ω. $\partial_{0} \omega$
Pick f a function of spue alae,

$$
-\Delta f=-\partial_{0} w_{0}+\operatorname{div} \stackrel{\rightharpoonup}{\omega}
$$

So $\quad \delta d f=-\delta \omega$ at $t=0$.

