We call $\vec{E}=\vec{E}_{\delta} q_{0}$ the electric field suented by e_{0}.

Let's drep the 'test's.

Mre generilly, if a_{1} and O_{2} are cha⿱gases at \vec{x}_{1}, \vec{x}_{2} with charses q_{1}, q_{2}

$$
\vec{E}=E_{\delta}\left(\vec{x}-\vec{x}_{1}\right) q_{1}+E_{\delta}\left(\vec{x}-\vec{x}_{2}\right) q_{2} .
$$

And given a stationgy chanse density $\rho(x)$

$$
\vec{E}=\int \vec{E} \vec{E}_{\delta}(\vec{x}-\vec{y}) \rho(\vec{y}) d \vec{y}
$$

From HW:

$$
\begin{aligned}
& \nabla \cdot E=\frac{p}{\varepsilon_{0}} \\
& \Omega=\int_{\Omega \Omega} E \cdot n=\frac{1}{\varepsilon_{0}} q:=\frac{1}{\varepsilon_{0}} \int_{\Omega} p(\vec{r}) d \vec{r} \\
& \text { total enclosed charge }
\end{aligned}
$$

Any we y,

$$
\frac{d}{l t} \vec{p}=\vec{E}_{e}
$$

We interpret this as three comporats of $\frac{d}{d t} P$.
Cnn we deduce the full equation $\frac{d}{d t} P=$?
and more natuacilly

$$
\frac{d}{d r} P=?
$$

\longrightarrow essentially 4 manertion.

$g(P, P)=m_{0}^{2} c^{2}$ regandless of τ.

$$
\begin{aligned}
g\left(P_{\nu} \frac{d P}{l \tau}\right) & =0 \\
P^{0} \frac{d P^{0}}{d \tau} & -\frac{n_{0} \gamma(v) \vec{v} \cdot \frac{d \vec{p}}{d \tau}=0}{\rho^{0} / c}=0 \\
\frac{d p^{0}}{l \tau} & =\frac{1}{c} \gamma(v) \vec{V} \cdot \frac{d \vec{p}}{d \tau} \\
& =\frac{\gamma(v)}{c} v \cdot \vec{E} e
\end{aligned}
$$

Also $\quad \frac{d \vec{p}}{d \tau}=\gamma(v) \vec{E} e$

$$
\text { so } \begin{aligned}
\frac{d}{d \tau} \rho= & {\left[\begin{array}{c}
\frac{\gamma(v)}{c} \\
v \cdot \\
\gamma(v) \\
\vec{E} e
\end{array}\right] } \\
= & \frac{1}{c}\left[\begin{array}{ll}
0 & \vec{E}^{\top} \\
\vec{E} & 0
\end{array}\right] \gamma(v)\left[\begin{array}{c}
c \\
\vec{v}
\end{array}\right] e \\
\frac{d}{d \tau} P= & \frac{1}{c}\left[\begin{array}{ll}
0 & \vec{E}^{\top} \\
\vec{E} & 0
\end{array}\right] V
\end{aligned}
$$

For non-trinad reasons we'll fucter

$$
\left[\begin{array}{cc}
0 & \vec{E}^{\top} \\
\vec{E} & 0
\end{array}\right]=\underbrace{G\left[\begin{array}{cc}
0 & \vec{E}^{\top} \\
-\vec{E} & O
\end{array}\right]}_{F, \text { anti symetuc. }}
$$

electomanetic field tersos.

$$
c \frac{d}{d \tau} P=G F V_{e}
$$

Now move to a fime wlere chazes are moong.

$$
\begin{aligned}
& \hat{x}=L x \\
& \hat{p}=L P \\
& \hat{V}=L V
\end{aligned}
$$

I clayn if $L^{\top} \hat{F} L=F$ Then $c \frac{d}{d \tau} \hat{P}=G \hat{F} \hat{V} e \quad$ as well.

In deed

$$
L^{t} G L=G
$$

$$
\begin{aligned}
G F V_{e} & =G L^{t} \hat{F} L V e \quad G L^{t}=L^{-1} G \\
& =L^{-1} G L^{t} \hat{F} L V_{e}
\end{aligned}
$$

$$
\begin{aligned}
c \frac{d}{d \tau} \hat{p}=c \frac{d}{d \tau} L P & =L\left(G F V_{e}\right) \\
& =L^{-1} L G \hat{F} \hat{V} e \\
& =G \hat{F} \hat{V} e
\end{aligned}
$$

We cull \hat{F} the E-M field in the boostad frime.

Coordinat free vesion

$$
\underset{\sim}{F}(\underset{\sim}{x}, \underset{\sim}{y})=X^{t} F Y
$$

in as other coond system,

$$
\begin{aligned}
\hat{X}^{t} \hat{F} \hat{Y} & =(L X)^{t} \hat{F} L Y \\
& =x^{t} L^{t} \hat{F} L Y \\
& =x^{\top} F Y
\end{aligned}
$$

Also, $L^{t} \hat{F} L=F \rightarrow\left(L^{t}\right)^{-1} F L^{-1}=\hat{F}$

$$
\begin{aligned}
& L^{t} \hat{F}^{t} L=-F \\
& \quad \hat{F}^{t}=-\left(L^{t}\right)^{-1} F L^{-1}=-\hat{F}, \text { so }
\end{aligned}
$$

alous andisymature

$$
\underset{\sim}{F}(\underset{\sim}{x}, \underset{\sim}{y})=-F(\underset{\sim}{y}, \underset{\sim}{x})
$$

fact it's designed to be untested over $2-d$ surfaces in spacetime, bat I'm settug a head of myself.

$$
F=\left[\begin{array}{cccc}
0 & E_{1} & E_{2} & E_{3} \\
-E_{1} & 0 & -c B_{3} & c B_{2} \\
-E_{2} & c B_{3} & 0 & -c B_{1} \\
-E_{3} & -c B_{2} & c B_{1} & 0
\end{array}\right]
$$

in an coordinate system.

This is just a convention an the naming of the entries and agrees with the station dy case.

$$
\begin{aligned}
& \vec{E}=\left(\dot{E}_{1}, E_{2}, E_{3}\right) \\
& \vec{B}=\left(B_{1}, B_{2}, B_{3}\right)
\end{aligned}
$$

are called electing, magnetic field.
They may look like uccturs to yous but they do ot transform like any Hins useful under boosts. Only F obeys the nice trusfomation law.

$$
\begin{aligned}
{\left[\begin{array}{ccc}
0 & -B_{3} & B_{2} \\
B_{3} & 0 & -B_{1} \\
-B_{2} & B_{1} & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] } & =\left[\begin{array}{cc}
-B_{3} v_{2}+B_{2} v_{3} \\
B_{3} v_{1} & -B_{1} v_{2} \\
-B_{2} v_{1}+B_{1} v_{2}
\end{array}\right] \\
& =\vec{B} \times \vec{v}=-\vec{v} \times B
\end{aligned}
$$

So $\quad F\left[\begin{array}{l}c \\ \vec{v}\end{array}\right]=\left[\begin{array}{c}\vec{E} \cdot \vec{v} \\ -c \vec{E}-c \vec{v} \times \vec{B}\end{array}\right]$

$$
c \frac{d P}{d \tau}=\gamma(v) G F\left[\begin{array}{l}
c \\
\vec{v}
\end{array}\right] e=\gamma(v)\left[\begin{array}{c}
\vec{E} \cdot \vec{v} \\
+c \vec{E}+c \vec{v} \times \vec{B}
\end{array}\right] e
$$

If $|v| \ll c, \frac{d}{d \tau} \approx \frac{l}{d t}, \quad P=\left[\begin{array}{l}\text { enemy } \\ m \vec{v}\end{array}\right]$
$\left.\frac{d}{d t} m \vec{v}=\vec{E}_{e}+\vec{v} \times B_{e}\right] \quad$ Lorentz force law.
$\frac{d}{d t}$ eresy $=\frac{1}{2} \vec{E} \cdot \vec{v} e \quad$ does not involve mass field. $\vec{v} \times B \perp \vec{v}$

To this point we have not usel the rolation

$$
\vec{E}=\int_{R^{3}} \vec{E}_{\delta}(x-y) p(y) d y \quad \vec{E}_{\delta}=\frac{1}{4_{\pi} \varepsilon_{0}} \frac{1}{|x|^{2}} \frac{x}{|x|}
$$

Next goal: "derine" Maxuell's equations.

Notation: V : specetine.
Λ^{0} factars on aspaceline
Λ^{\prime} covector fields an spacetme

$$
d: \Lambda^{0} \rightarrow 1^{\prime}
$$

mands, $d f=\left[\partial_{0} f, \ldots, \partial_{3} f\right]$
It hus a comparian

$$
\begin{aligned}
\delta: \Lambda^{\prime} & \rightarrow \Lambda^{0} \\
\delta_{\omega} & =\partial_{0} \nu_{0}-\partial_{1} \omega_{1}-\partial_{2} \omega_{2}-\partial_{3} \omega_{3} \\
\omega & \rightarrow V \rightarrow D_{N} V=\delta \omega
\end{aligned}
$$

Exerise: $\quad \hat{\delta} \hat{\omega}=\delta_{\omega}$

$$
\delta d f=\square f
$$

$\Lambda^{\prime}: \quad$ at ench $x \in V$, is a mp $w: V \rightarrow \mathbb{R}$.
Λ^{2} : at end $x \in U$, is a map $F: V \times V \rightarrow \mathbb{R}$, biliner, $\quad F(v, \omega)=-F(\omega, V)$.
(esg. the $E-M$ field). We an rep. by un entismetric matrice.
Λ^{3}, Λ^{4} as well.
And euch of these is ment to be intogutd (Λ^{\prime} over lines Λ^{2} over 2-Suluces, eft). $\iint_{a}^{b} x\left(\alpha^{\prime}(s)\right) d s$ is independat of peomen,

Big pictore
we've sean Ths
Moreover $d^{2}=0$
we'll usit this for Maxuel

$$
\begin{aligned}
& \text { Hodge } * \quad *: \Lambda^{i} \\
& \rightarrow \Lambda^{4-i} \\
& *: \Lambda^{0} \\
&: \Lambda^{1} \rightarrow \Lambda^{4} \\
& \Lambda^{2} \\
&: \Lambda^{3} \rightarrow \Lambda^{2} \\
&: \Lambda^{1} \\
& \Lambda^{4}
\end{aligned}>\Lambda^{0} .
$$

$$
\begin{array}{ll}
\delta=* d * & \text { e:g } \Lambda^{2} \rightarrow \Lambda^{2} \rightarrow \Lambda^{3} \rightarrow \Lambda^{\prime} \\
\left(\text { so } \delta^{2}=0\right) & \Lambda^{\prime} \rightarrow \Lambda^{3} \rightarrow \Lambda^{4} \rightarrow \Lambda^{0}
\end{array}
$$

But I'm soing to they to a vord dibassins Λ^{3}, Λ^{4} ($\Lambda^{0}, \Lambda^{\prime}, \Lambda^{2}$ un be rep in temes of natiree, vectors)

$$
\begin{aligned}
& \Lambda^{\circ} \stackrel{d}{\underset{\delta}{e}} \Lambda^{\prime} \quad \delta d=\square \\
& \Lambda^{\prime} \stackrel{d}{\underset{~}{\leftarrow}} \Lambda^{2}-\delta d=M \rightarrow \text { makwell operator. }
\end{aligned}
$$

So who is d, δ ?

$$
\begin{gathered}
\omega=\left[\omega_{0}, \omega_{1}, \omega_{2}, \omega_{3}\right] \\
\left(d_{w}\right)_{i j}=\partial_{i} \omega_{j}-\partial_{j} \omega_{i}
\end{gathered}
$$

Execise $L^{t} \hat{d} \hat{\omega} L=d \omega \quad$ (dw trustons like a 2-fom)

Exerase $d^{2}: \Lambda^{0} \rightarrow \Lambda^{2}=0$

This is a deep gerealization of $\nabla_{x}(\nabla f)=0$

$$
\operatorname{div}(\nabla \times V)=0
$$

To descrine δ I need sone notation.
An antisymetric 4×4 madnix lus 6 inelapeadat entrices.

Given $\quad R=\left[R_{1}, R_{2}, R_{3}\right]$

$$
\begin{aligned}
S & =\left[S_{1}, S_{2}, S_{3}\right] \\
\sigma_{F}(R, S) & =\left[\begin{array}{cccc}
0 & R_{1} & R_{2} & R_{3} \\
-R_{1} & 0 & S_{3} & -S_{2} \\
-R_{2} & -S_{3} & 0 & S_{1} \\
-R_{3} & S_{2} & -S_{1} & 0
\end{array}\right]
\end{aligned}
$$

Gives us a w.y to talk aboent then-

$$
\text { 0.g. } \quad F=\mathscr{F}(E,-c B)
$$

Exeruse: if $\omega=\left[\omega_{0}, \vec{\omega}\right]$

$$
d \omega=\vec{\pi}\left(\partial_{0} \vec{\omega}-\nabla \omega_{0}, \nabla \times \vec{\omega}\right)
$$

$$
\begin{aligned}
& *: \Lambda^{2} \rightarrow \Lambda^{2} \\
& * F(R, S)=क(S,-R)
\end{aligned}
$$

$$
L^{t} \hat{F} L=F
$$

$$
L^{t} \hat{\mathscr{F}} \hat{F} L=* F
$$

$(* F$ defied by $\quad * F)$
(well defined if $L^{t} \hat{\Psi} \hat{F} L=\times F$)

$$
\text { *d } F(R, S)=\left[\operatorname{div} S,-\nabla \times R+\partial_{0} S\right]
$$

$$
\begin{aligned}
* d * F(R, S) & =* d F(S,-R) \\
& =\left[-\operatorname{div} R,-\nabla_{x} S-\partial_{0} R\right]
\end{aligned}
$$

We detare $m=\Lambda^{\prime} \rightarrow \Lambda^{\prime}$

$$
m=-\delta d
$$

$E_{\text {xerise: }}-\delta d \omega=\square \omega-d \delta \omega$
where $\square_{\omega}=\left(\square \omega_{0}, ., \square \omega_{3}\right)$.

Fact: $\hat{m} \hat{\omega} L=m_{\omega} \quad$ (η_{ω} trusfones as a $1-f_{o m}$)

$$
\begin{aligned}
& \phi_{\delta}=\frac{1}{4 \pi \varepsilon_{0}}|x| \\
& -\nabla \phi_{\delta}=E_{\delta} \\
& \phi(x)=\int \phi_{f}(x-y) c(y) d y \\
& -\nabla \phi=\int E_{\delta}(x-y) p(y) d y=E \\
& -\Delta \phi=\int \operatorname{div} E_{\delta} p(y) d y \\
& =\frac{1}{\varepsilon_{0}} \rho \\
& \omega=[\phi, 0] \\
& d_{\omega}=\nabla \operatorname{TI}(-\nabla \phi, 0)=\text { FI}(E, 0) \\
& \text { in by lime } d \omega=F \\
& d \omega=\sigma(E, \sim B)
\end{aligned}
$$

$$
\begin{aligned}
-\delta d \omega & =\square \omega-d \delta \omega \\
& =(-\Delta \phi, 0) \\
& =(-\operatorname{dio} \nabla \phi, 0) \\
& =\frac{1}{c \varepsilon_{0}}(c \rho, 0)
\end{aligned}
$$

$$
\left\{\begin{array}{l}
\text { corrant dersity vector: } \\
\text { it's covector version) }
\end{array} c_{\rho}^{c}\right]_{\text {chareflax }}^{c} \frac{c}{m^{2}} \frac{1}{m^{3}} \cdot \frac{m}{s}
$$

So in any frume, ast jeont at reest,

$$
m_{\omega}=\frac{1}{c \varepsilon_{0}}\left(c \rho_{s}-j\right)
$$

