But also, any livern combination of these is agm a solution of the whe equation. It's a sum of plar waons being trasputed it vonners dinections at speed c.
"Eresy"lusity of a solution

$$
\begin{aligned}
& \frac{1}{2}\left(\frac{1}{c} u_{t}^{2}+|\nabla u|^{2}\right) \\
& \frac{d}{d t} \int \frac{1}{2}\left(\int_{c^{2}} u_{t}^{2}+|\nabla u|^{2}\right) d x \\
& =\int \frac{1}{c^{2}} u_{t} u_{t t}+\nabla u \cdot \nabla u_{t} d x \\
& = \\
& =\iint_{c^{2}} u_{t} u_{t t}-u_{t} \Delta u d x \\
& \\
& =\int u_{t}\left[u_{t t}-\Delta u\right] d x=0
\end{aligned}
$$

In fact, the soletur hus an associated erersy-noventum.

$$
P=\left[\begin{array}{c}
\frac{1}{2}\left(\underset{c}{\left(u_{2}^{2}+\right.}\right. \\
-\frac{1}{c} u_{t} \nabla u
\end{array}\right]
$$

$$
\begin{aligned}
D_{i v} P & =\frac{1}{c^{3}} u_{t} u_{t t}+\frac{1}{c} \nabla u_{t} \cdot \nabla u-\frac{1}{c} \nabla_{u_{t}} \cdot \nabla u-\frac{1}{c} u_{t} d_{a} \\
& =\frac{1}{c} u_{t}\left[\frac{1}{c^{2}} u_{t t}-\Delta u\right]=0
\end{aligned}
$$

This is a locally conserved quantity.

It is causal, future pointy by (andy-Sauntz.

A 2-d computation

$$
P=\left[\frac{1}{2}\left(\frac{1}{2} \partial^{2} \alpha^{2}-\left(\alpha_{44}\right)^{2}\right]\right.
$$

(Euclidian!)

$$
\begin{gathered}
0=-\int_{A} \frac{1}{2}\left[\frac{1}{c^{2}}\left(\partial_{t} u\right)^{2}+\left(\partial_{x} u\right)^{2}\right]+\int_{B} \frac{1}{2}[-] \\
=\int_{C} \nu^{*} \cdot P+\int_{D} \nu^{*} \cdot P
\end{gathered}
$$

On D $\nu^{*}=\frac{1}{\sqrt{2}}[1,1]$

$$
\nu^{*}-P=g(\nu, \rho) \quad \nu=\frac{1}{\sqrt{2}}\left[\begin{array}{c}
1 \\
-1
\end{array}\right]
$$

$$
\begin{aligned}
O_{n} C \nu^{*} & =\frac{1}{\sqrt{2}}\left[\begin{array}{c}
1 \\
-1
\end{array}\right] \\
\nu & =\frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
1
\end{array}\right]
\end{aligned}
$$

$g(P, \nu) \geqslant 0$ as P is the like, f.p

$$
\nu \text { is f.p, aull }
$$

$$
\begin{aligned}
\int_{B} \frac{1}{2}[-] & =\int_{A} \frac{1}{2}[-]-\int_{C O D} g(P, \nu) d A \\
& \leqslant \int_{A} \frac{1}{2}[-]
\end{aligned}
$$

(with equalty off Pis paculld to v)

Highen divens:

$$
\int_{B} \frac{1}{2}[-]=\int_{A} \frac{1}{2}[-]-\underbrace{\int_{C} g(\nu, p)}_{C}
$$

If $\partial_{t} u, \nabla_{u}=0$ on A then also on B

Exenuse: 4.3 constrat or whole frustum.

Con: There exists at most one solution at

$$
\begin{aligned}
& D_{u}=0 \\
& \left.u\right|_{t=0}=\phi \\
& \left.\frac{1}{c} v_{t}\right|_{t=0}=\psi
\end{aligned}
$$

Pf: If u_{1}, u_{2} are solutions then $w=u_{2}-u_{1}$

$$
\text { solves } \begin{array}{r}
\square \omega=0 \\
\omega_{t}=0 \\
=0 \\
\left.\frac{\mid}{c} u_{t}\right|_{t=0}=0
\end{array}
$$

Then on ar disc

$$
w_{L}^{2}+\left|D_{w}\right|^{2}=0
$$

so w is constant.

So w is independent of spue $w=w(t)$. But $w_{t} \equiv 0$ and wis constant. But $\left.w\right|_{t=0}=0$ so $w=0$.

In fuct, under amill hupotleses on d, 4, Nere exists a solution:

$$
u(x, t)=\frac{1}{c \cdot 4 \pi t} \int_{\partial B(x, c t)} \psi(y) d y+\frac{1}{c} \partial t\left[\begin{array}{c}
\left.\frac{1}{4 \pi t c} \int_{\partial B(x, t)} \phi(y) d y\right]
\end{array}\right]
$$

on $\psi, \phi, \nabla \phi$ here nisht at the baubly.

Maxwell's Equations

Particles in nature posess an innate property called charge, in The same sense that particles also pores mass.

It's measured in Coulombs, which is the change of 6.2×10^{8} electors.

Classical observation. two particles

$$
\underbrace{e_{\text {test }}}_{\text {- }}
$$

e_{0}
\longrightarrow stationary at the origin
The force exerted by e_{0} on detest is

$$
\vec{F}=\vec{E}_{\delta q_{0} q_{\text {test }}}
$$

Whee $\vec{E}_{\delta}=\frac{1}{4 \pi \varepsilon_{0}|\vec{x}|^{2}} \frac{\vec{x}}{|\vec{x}|}$
This is true ind of velocity of $e_{\text {dent }}$, and is called the Carlanb force law.

We call $\vec{E}=\vec{E}_{\delta} q_{0}$ the electric field suented by e_{0}.

Let's drep the 'test's.

Mre generilly, if a_{1} and O_{2} are cha⿱gases at \vec{x}_{1}, \vec{x}_{2} with charses q_{1}, q_{2}

$$
\vec{E}=E_{\delta}\left(\vec{x}-\vec{x}_{1}\right) q_{1}+E_{\delta}\left(\vec{x}-\vec{x}_{2}\right) q_{2} .
$$

And given a stationgy chanse density $\rho(x)$

$$
\vec{E}=\int \vec{E} \vec{E}_{\delta}(\vec{x}-\vec{y}) \rho(\vec{y}) d \vec{y}
$$

From HW:

$$
\begin{aligned}
& \nabla \cdot E=\frac{p}{\varepsilon_{0}} \\
& \Omega=\int_{\Omega \Omega} E \cdot n=\frac{1}{\varepsilon_{0}} q:=\frac{1}{\varepsilon_{0}} \int_{\Omega} p(\vec{r}) d \vec{r} \\
& \text { total enclosed charge }
\end{aligned}
$$

Any we y,

$$
\frac{d}{l t} \vec{p}=\vec{E}_{e}
$$

We interpret this as three comporats of $\frac{d}{d t} P$.
Cnn we deduce the full equation $\frac{d}{d t} P=$?
and more natuacilly

$$
\frac{d}{d r} P=?
$$

\longrightarrow essentially 4 manertion.

$g(P, P)=m_{0}^{2} c^{2}$ regandless of τ.

$$
\begin{aligned}
g\left(P_{\nu} \frac{d P}{l \tau}\right) & =0 \\
P^{0} \frac{d P^{0}}{d \tau} & -\frac{n_{0} \gamma(v) \vec{v} \cdot \frac{d \vec{p}}{d \tau}=0}{\rho^{0} / c}=0 \\
\frac{d p^{0}}{l \tau} & =\frac{1}{c} \gamma(v) \vec{V} \cdot \frac{d \vec{p}}{d \tau} \\
& =\frac{\gamma(v)}{c} v \cdot \vec{E} e
\end{aligned}
$$

Also $\quad \frac{d \vec{p}}{d \tau}=\gamma(v) \vec{E} e$

$$
\text { so } \begin{aligned}
\frac{d}{d \tau} \rho= & {\left[\begin{array}{c}
\frac{\gamma(v)}{c} \\
v \cdot \\
\gamma(v) \\
\vec{E} e
\end{array}\right] } \\
= & \frac{1}{c}\left[\begin{array}{ll}
0 & \vec{E}^{\top} \\
\vec{E} & 0
\end{array}\right] \gamma(v)\left[\begin{array}{c}
c \\
\vec{v}
\end{array}\right] e \\
\frac{d}{d \tau} P= & \frac{1}{c}\left[\begin{array}{ll}
0 & \vec{E}^{\top} \\
\vec{E} & 0
\end{array}\right] V
\end{aligned}
$$

For non-trinad reasons we'll fucter

$$
\left[\begin{array}{cc}
0 & \vec{E}^{\top} \\
\vec{E} & 0
\end{array}\right]=\underbrace{G\left[\begin{array}{cc}
0 & \vec{E}^{\top} \\
-\vec{E} & O
\end{array}\right]}_{F, \text { anti symetuc. }}
$$

electomanetic field tersos.

$$
c \frac{d}{d \tau} P=G F V_{e}
$$

Now move to a fime wlere chazes are moong.

$$
\begin{aligned}
& \hat{x}=L x \\
& \hat{p}=L P \\
& \hat{V}=L V
\end{aligned}
$$

I clayn if $L^{\top} \hat{F} L=F$ Then $c \frac{d}{d \tau} \hat{P}=G \hat{F} \hat{V} e \quad$ as well.

In deed

$$
L^{t} G L=G
$$

$$
\begin{aligned}
G F V_{e} & =G L^{t} \hat{F} L V e \quad G L^{t}=L^{-1} G \\
& =L^{-1} G L^{t} \hat{F} L V_{e}
\end{aligned}
$$

$$
\begin{aligned}
c \frac{d}{d \tau} \hat{p}=c \frac{d}{d \tau} L P & =L\left(G F V_{e}\right) \\
& =L^{-1} L G \hat{F} \hat{V} e \\
& =G \hat{F} \hat{V} e
\end{aligned}
$$

We cull \hat{F} the E-M field in the boostad frime.

Coordinat free vesion

$$
\underset{\sim}{F}(\underset{\sim}{x}, \underset{\sim}{y})=X^{t} F Y
$$

in as other coond system,

$$
\begin{aligned}
\hat{X}^{t} \hat{F} \hat{Y} & =(L X)^{t} \hat{F} L Y \\
& =x^{t} L^{t} \hat{F} L Y \\
& =x^{\top} F Y
\end{aligned}
$$

Also, $L^{t} \hat{F} L=F \rightarrow\left(L^{t}\right)^{-1} F L^{-1}=\hat{F}$

$$
\begin{aligned}
& L^{t} \hat{F}^{t} L=-F \\
& \quad \hat{F}^{t}=-\left(L^{t}\right)^{-1} F L^{-1}=-\hat{F}, \text { so }
\end{aligned}
$$

alous andisymature

$$
\underset{\sim}{F}(\underset{\sim}{x}, \underset{\sim}{y})=-F(\underset{\sim}{y}, \underset{\sim}{x})
$$

fact it's designed to be utesuted over 2-d surfaces in spacetime, bat I'm settug a head of myself.

$$
F=\left[\begin{array}{cccc}
0 & E_{1} & E_{2} & E_{3} \\
-E_{1} & 0 & -c B_{3} & c B_{2} \\
-E_{2} & c B_{3} & 0 & -c B_{1} \\
-E_{3} & -c B_{2} & c B_{1} & 0
\end{array}\right] \quad \text { in an coordinate system. }
$$

This is just a convention a the ranis of the ensures and agrees with the station dy case.

$$
\begin{aligned}
& \vec{E}=\left(\dot{E}_{1}, E_{2}, E_{3}\right) \\
& \vec{B}=\left(B_{1}, B_{2}, B_{3}\right) \text { ae called elective, magredie } \\
& \text { field. }
\end{aligned}
$$

They may look like vacturs to yous but they do at transform like vectors. F las re nice transformation law.

$$
\begin{aligned}
{\left[\begin{array}{ccc}
0 & -B_{3} & B_{2} \\
B_{3} & 0 & -B_{1} \\
-B_{2} & B_{1} & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] } & =\left[\begin{array}{cc}
-B_{3} v_{2}+B_{2} v_{3} \\
B_{3} v_{1} & -B_{1} v_{2} \\
-B_{2} v_{1}+B_{1} v_{2}
\end{array}\right] \\
& =\vec{B} \times \vec{v}=-\vec{v} \times B
\end{aligned}
$$

So $\quad F\left[\begin{array}{l}c \\ \vec{v}\end{array}\right]=\left[\begin{array}{c}\vec{E} \cdot \vec{v} \\ -c \vec{E}-c \vec{v} \times \vec{B}\end{array}\right]$

$$
c \frac{d P}{d \tau}=\gamma(v) G F\left[\begin{array}{l}
c \\
\vec{v}
\end{array}\right] e=\gamma(v)\left[\begin{array}{c}
\vec{E} \cdot \vec{v} \\
+c \vec{E}+c \vec{v} \times \vec{B}
\end{array}\right] e
$$

If $|v| \ll c, \frac{d}{d \tau} \approx \frac{l}{d t}, \quad P=\left[\begin{array}{l}\text { enemy } \\ m \vec{v}\end{array}\right]$
$\left.\frac{d}{d t} m \vec{v}=\vec{E}_{e}+\vec{v} \times B_{e}\right] \quad$ Lorentz force law.
$\frac{d}{d t}$ eresy $=\frac{1}{2} \vec{E} \cdot \vec{v} e \quad$ does not involve mass field. $\vec{v} \times B \perp \vec{v}$

